THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES

被引:3
|
作者
de Berg, Mark [1 ]
van Nijnatten, Fred [1 ]
Sitters, Rene [2 ]
Woeginger, Gerhard J. [1 ]
Wolff, Alexander [3 ]
机构
[1] TU Eindhoven, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Vrije Univ Amsterdam, Fac Econ & Business Adm, Amsterdam, Netherlands
[3] Univ Wurzburg, Lehrstuhl Informat 1, Wurzburg, Germany
关键词
Geometric traveling salesman problem; power-assignment in wireless networks; distance-power gradient; NP-hard; APX-hard; APPROXIMATION ALGORITHMS; PERFORMANCE GUARANTEES; ASSIGNMENT PROBLEMS; POWER-CONSUMPTION; RANGE ASSIGNMENT; NETWORKS; CONNECTIVITY;
D O I
10.4230/LIPIcs.STACS.2010.2458
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let P be a set of points in R-d, and let alpha >= 1 be a real number. We define the distance between two points p, q epsilon P as vertical bar pq vertical bar(alpha), where vertical bar pq vertical bar denotes the standard Euclidean distance between p and q. We denote the traveling salesman problem under this distance function by Tsp(d, alpha). We design a 5-approximation algorithm for Tsp(2,2) and generalize this result to obtain an approximation factor of 3(alpha-1) + root 6(alpha)/3 for d = 2 and all alpha >= 2. We also study the variant Rev-Tsp of the problem where the traveling salesman is allowed to revisit points. We present a polynomial-time approximation scheme for Rev-Tsp(2, alpha) with alpha >= 2, and we show that Rev-Tsp(d, alpha) is apx-hard if d >= 3 and alpha > 1. The apx-hardness proof carries over to Tsp(d, alpha) for the same parameter ranges.
引用
收藏
页码:239 / 250
页数:12
相关论文
共 50 条