Oscillation criteria for nonlinear damped dynamic equations on time scales

被引:86
|
作者
Erbe, Lynn [1 ]
Hassan, Taher S. [1 ,2 ]
Peterson, Allan [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
oscillation; delay nonlinear dynamic equations; time scales;
D O I
10.1016/j.amc.2008.04.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new oscillation criteria for the second order nonlinear damped delay dynamic equation (r(t) (chi(Delta) (t))(gamma))(Delta) + p(t) (chi(Delta sigma) (t))(gamma) + q(t)f (chi(tau(t))) = 0. Our results generalize and improve some known results for oscillation of second order nonlinear delay dynamic equation. Our results are illustrated with examples. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:343 / 357
页数:15
相关论文
共 50 条
  • [21] Interval criteria for oscillation of nonlinear second-order dynamic equations on time scales
    Anderson, Douglas R.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4614 - 4623
  • [22] Oscillation Criteria for Second Order Nonlinear Neutral Perturbed Dynamic Equations on Time Scales
    Yu, Xiuping
    Du, Hua
    Yang, Hongyu
    JOURNAL OF COMPUTERS, 2013, 8 (06) : 1528 - 1535
  • [23] Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales
    Agarwal R.P.
    O'Regan D.
    Saker S.H.
    Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 133 - 147
  • [24] Oscillation Criteria for Certain Fourth Order Nonlinear Neutral Dynamic Equations on Time Scales
    Zhao, Xiaoqing
    Zhang, Zhongjun
    Yang, Jun
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 952 - 957
  • [25] Oscillation of second-order damped dynamic equations on time scales
    Saker, Samir H.
    Agarwal, Ravi P.
    O'Regan, Donal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1317 - 1337
  • [26] Oscillation of nonlinear neutral dynamic equations on time scales
    G. N. Chhatria
    Said R. Grace
    John R. Graef
    Journal of the Egyptian Mathematical Society, 29 (1)
  • [27] Oscillation of perturbed nonlinear dynamic equations on time scales
    Sun, HR
    Li, WT
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (10): : 755 - 760
  • [28] Oscillation criteria for solution to partial dynamic equations on time scales
    Ramesh, R.
    Dix, Julio G.
    Harikrishnan, S.
    Prakash, P.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (05): : 1788 - 1797
  • [29] Oscillation criteria of certain delay dynamic equations on time scales
    Zhang, BG
    Yan, XZ
    Liu, XY
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (10) : 933 - 946
  • [30] Oscillation and Nonoscillation Criteria for Nonlinear Dynamic Systems on Time Scales
    Zhu, Shanliang
    Sheng, Chunyun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012