Deep learning for low-dose CT

被引:2
|
作者
Chen, Hu [1 ]
Zhang, Yi [1 ]
Zhou, Jiliu [1 ]
Wang, Ge [2 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Sichuan, Peoples R China
[2] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
来源
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Low-dose CT; deep learning; auto-encoder; convolutional; deconvolutional; residual neural network; VIEW IMAGE-RECONSTRUCTION; REDUCTION;
D O I
10.1117/12.2272723
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Deep Learning-Based Reconstruction Improves the Image Quality of Low-Dose CT Colonography
    Chen, Yanshan
    Huang, Zixuan
    Feng, Lijuan
    Zou, Wenbin
    Kong, Decan
    Zhu, Dongyun
    Dai, Guochao
    Zhao, Weidong
    Zhang, Yuanke
    Luo, Mingyue
    ACADEMIC RADIOLOGY, 2024, 31 (08) : 3191 - 3199
  • [42] Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?
    Peijie Lyu
    Nana Liu
    Brian Harrawood
    Justin Solomon
    Huixia Wang
    Yan Chen
    Francesca Rigiroli
    Yuqin Ding
    Fides Regina Schwartz
    Hanyu Jiang
    Carolyn Lowry
    Luotong Wang
    Ehsan Samei
    Jianbo Gao
    Daniele Marin
    European Radiology, 2023, 33 : 1629 - 1640
  • [43] Longitudinal Variability Analysis on Low-dose Abdominal CT with Deep Learning-based Segmentation
    Yu, Xin
    Tang, Yucheng
    Yang, Qi
    Lee, Ho Hin
    Gao, Riqiang
    Bao, Shunxing
    Moore, Ann Zenobia
    Ferrucci, Luigi
    Landman, Bennett A.
    MEDICAL IMAGING 2023, 2023, 12464
  • [44] Deep Learning for Low-Dose CT Denoising Using Perceptual Loss and Edge Detection Layer
    Maryam Gholizadeh-Ansari
    Javad Alirezaie
    Paul Babyn
    Journal of Digital Imaging, 2020, 33 : 504 - 515
  • [45] Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT
    Venkadesh, Kiran Vaidhya
    Setio, Arnaud A. A.
    Schreuder, Anton
    Scholten, Ernst T.
    Chung, Kaman
    Wille, Mathilde M. W.
    Saghir, Zaigham
    van Ginneken, Bram
    Prokop, Mathias
    Jacobs, Colin
    RADIOLOGY, 2021, 300 (02) : 438 - 447
  • [46] Detail-Revealing Deep Low-Dose CT Reconstruction
    Ye, Xinchen
    Xu, Yuyao
    Xu, Rui
    Kido, Shoji
    Tomiyama, Noriyuki
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8789 - 8796
  • [47] Detector shifting and deep learning based ring artifact correction method for low-dose CT
    Liu, Yuedong
    Wei, Cunfeng
    Xu, Qiong
    MEDICAL PHYSICS, 2023, 50 (07) : 4308 - 4324
  • [48] Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?
    Lyu, Peijie
    Liu, Nana
    Harrawood, Brian
    Solomon, Justin
    Wang, Huixia
    Chen, Yan
    Rigiroli, Francesca
    Ding, Yuqin
    Schwartz, Fides Regina
    Jiang, Hanyu
    Lowry, Carolyn
    Wang, Luotong
    Samei, Ehsan
    Gao, Jianbo
    Marin, Daniele
    EUROPEAN RADIOLOGY, 2023, 33 (03) : 1629 - 1640
  • [49] Deep Learning for Low-Dose CT Denoising Using Perceptual Loss and Edge Detection Layer
    Gholizadeh-Ansari, Maryam
    Alirezaie, Javad
    Babyn, Paul
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (02) : 504 - 515
  • [50] Direct Prediction of Cardiovascular Mortality from Low-dose Chest CT using Deep Learning
    van Velzen, Sanne G. M.
    Zreik, Majd
    Lessmann, Nikolas
    Viergever, Max A.
    de Jong, Pim A.
    Verkooijen, Helena M.
    Isgum, Ivana
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949