Deep learning for low-dose CT

被引:2
|
作者
Chen, Hu [1 ]
Zhang, Yi [1 ]
Zhou, Jiliu [1 ]
Wang, Ge [2 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Sichuan, Peoples R China
[2] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
来源
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Low-dose CT; deep learning; auto-encoder; convolutional; deconvolutional; residual neural network; VIEW IMAGE-RECONSTRUCTION; REDUCTION;
D O I
10.1117/12.2272723
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Given the potential risk of X-ray radiation to the patient, low-dose CT has attracted a considerable interest in the medical imaging field. Currently, the main stream low-dose CT methods include vendor-specific sinogram domain filtration and iterative reconstruction algorithms, but they need to access raw data whose formats are not transparent to most users. Due to the difficulty of modeling the statistical characteristics in the image domain, the existing methods for directly processing reconstructed images cannot eliminate image noise very well while keeping structural details. Inspired by the idea of deep learning, here we combine the autoencoder, deconvolution network, and shortcut connections into the residual encoder-decoder convolutional neural network (RED-CNN) for low-dose CT imaging. After patch-based training, the proposed RED-CNN achieves a competitive performance relative to the-state-of-art methods. Especially, our method has been favorably evaluated in terms of noise suppression and structural preservation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] FRAMELET DENOISING FOR LOW-DOSE CT USING DEEP LEARNING
    Kang, Eunhee
    Ye, Jong Chul
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 311 - 314
  • [2] Low-Dose CT Image Reconstruction With a Deep Learning Prior
    Park, Hyoung Suk
    Kim, Kyungsang
    Jeon, Kiwan
    IEEE ACCESS, 2020, 8 : 158647 - 158655
  • [3] LUNG THORAX - Deep Learning Reconstruction of Low-dose CT Images
    Grawert, Stephanie
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024, 196 (08): : 783 - 784
  • [4] Research progress of deep learning in low-dose CT image denoising
    Zhang, Fan
    Liu, Jingyu
    Liu, Ying
    Zhang, Xinhong
    RADIATION PROTECTION DOSIMETRY, 2023, 199 (04) : 337 - 346
  • [5] DEEP LEARNING-BASED SINOGRAM COMPLETION FOR LOW-DOSE CT
    Ghani, Muhammad Usman
    Karl, W. Clem
    PROCEEDINGS 2018 IEEE 13TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2018,
  • [6] Combined Low-dose Simulation and Deep Learning for CT Denoising: Application in Ultra-low-dose Chest CT
    Ahn, Chulkyun
    Heo, Changyong
    Kim, Jong Hyo
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [7] A Review of deep learning methods for denoising of medical low-dose CT images
    Zhang, Ju
    Gong, Weiwei
    Ye, Lieli
    Wang, Fanghong
    Shangguan, Zhibo
    Cheng, Yun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [8] Deep learning-based algorithms for low-dose CT imaging: A review
    Chen, Hongchi
    Li, Qiuxia
    Zhou, Lazhen
    Li, Fangzuo
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 172
  • [9] StatNet: Statistical Image Restoration for Low-Dose CT using Deep Learning
    Choi, Kihwan
    Lim, Joon Seok
    Kim, Sungwon Kim
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (06) : 1137 - 1150
  • [10] A Comparison Study of Deep Learning Designs for Improving Low-dose CT Denoising
    Wang, Vincent
    Wei, Alice
    Tan, Jiaxing
    Lu, Siming
    Cao, Weiguo
    Gao, Yongfeng
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596