Real intersection points of piecewise algebraic curves

被引:4
|
作者
Wu, Jinming [1 ]
机构
[1] Zhejiang Gongshang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Piecewise algebraic curves; Real intersection points; Interval polynomial; Interval zeros; THEOREM; NOTHER; ZEROS;
D O I
10.1016/j.aml.2011.11.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The piecewise algebraic curve, as the set of zeros of a bivariate spline function, is a generalization of the classical algebraic curve. In this work, we present an algorithm for computing the real intersection points of piecewise algebraic curves. It is primarily based on the interval zeros of the univariate interval polynomial in Bernstein form. An illustrative example is provided to show that the proposed algorithm is flexible. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1299 / 1303
页数:5
相关论文
共 50 条
  • [21] The Bezout Number of Piecewise Algebraic Curves
    Dian Xuan GONG
    Ren Hong WANG
    Acta Mathematica Sinica,English Series, 2012, (12) : 2535 - 2544
  • [22] The Bezout number of piecewise algebraic curves
    Gong, Dian Xuan
    Wang, Ren Hong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (12) : 2535 - 2544
  • [23] The Bezout number of piecewise algebraic curves
    Dian Xuan Gong
    Ren Hong Wang
    Acta Mathematica Sinica, English Series, 2012, 28 : 2535 - 2544
  • [24] The Bezout Number of Piecewise Algebraic Curves
    Dian Xuan GONG
    Ren Hong WANG
    ActaMathematicaSinica, 2012, 28 (12) : 2535 - 2544
  • [25] The Bezout Number for Piecewise Algebraic Curves
    Xiquan Shi
    Renhong Wang
    BIT Numerical Mathematics, 1999, 39 : 339 - 349
  • [26] ON THE INTERSECTION OF THE CLOSE ALGEBRAIC-CURVES
    GUDKOV, DA
    SHUSTIN, EI
    LECTURE NOTES IN MATHEMATICS, 1984, 1060 : 278 - 289
  • [27] IMPROPER INTERSECTION OF ALGEBRAIC-CURVES
    ABHYANKAR, SS
    CHANDRASEKAR, S
    CHANDRU, V
    ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (02): : 147 - 159
  • [28] INTERSECTION OF ALGEBRAIC SPACE-CURVES
    ABHYANKAR, SS
    CHANDRASEKAR, S
    CHANDRU, V
    DISCRETE APPLIED MATHEMATICS, 1991, 31 (02) : 81 - 96
  • [29] RATIONAL POINTS OF ALGEBRAIC CURVES
    DEMYANENKO, VA
    MATHEMATICAL NOTES, 1975, 18 (5-6) : 1124 - 1126
  • [30] SUBCANONICAL POINTS ON ALGEBRAIC CURVES
    Bullock, Evan M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (01) : 99 - 122