Machine Learning-Derived Severe Weather Probabilities from a Warn-on-Forecast System

被引:10
|
作者
Clark, Adam J. [1 ,2 ]
Loken, Eric D. [1 ,3 ]
机构
[1] NOAA, OAR, Natl Severe Storms Lab, Norman, OK 73072 USA
[2] Univ Oklahoma, Sch Meteorol, Norman, OK 73069 USA
[3] Univ Oklahoma, Cooperat Inst Severe & High Impact Weather Res & O, Norman, OK USA
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
Atmosphere; Ensembles; Forecast verification; skill; Mesoscale models; Regional models; Machine learning; LARGE-EDDY SIMULATION; CONVECTION-ALLOWING MODELS; TURBULENCE CLOSURE-MODEL; YAMADA LEVEL-3 MODEL; PREDICTION; IDENTIFICATION; PRECIPITATION; IMPROVEMENT; ADVECTION; EVOLUTION;
D O I
10.1175/WAF-D-22-0056.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Severe weather probabilities are derived from the Warn-on-Forecast System (WoFS) run by NOAA's National Severe Storms Laboratory (NSSL) during spring 2018 using the random forest (RF) machine learning algorithm. Recent work has shown this method generates skillful and reliable forecasts when applied to convection-allowing model ensembles for the "Day 1" time range (i.e., 12-36-h lead times), but it has been tested in only one other study for lead times relevant to WoFS (e.g., 0-6 h). Thus, in this paper, various sets of WoFS predictors, which include both environment and storm-based fields, are input into a RF algorithm and trained using the occurrence of severe weather reports within 39 km of a point to produce severe weather probabilities at 0-3-h lead times. We analyze the skill and reliability of these forecasts, sensitivity to different sets of predictors, and avenues for further improvements. The RF algorithm produced very skillful and reliable severe weather probabilities and significantly outperformed baseline probabilities calculated by finding the best performing updraft helicity (UH) threshold and smoothing parameter. Experiments where different sets of predictors were used to derive RF probabilities revealed 1) storm attribute fields contributed significantly more skill than environmental fields, 2) 2-5 km AGL UH and maximum updraft speed were the best performing storm attribute fields, 3) the most skillful ensemble summary metric was a smoothed mean, and 4) the most skillful forecasts were obtained when smoothed UH from individual ensemble members were used as predictors.
引用
收藏
页码:1721 / 1740
页数:20
相关论文
共 50 条
  • [41] Reducing Intraoperative Hypotension Using a Machine Learning-Derived Early Warning System Reply
    Geerts, Bart F.
    Vlaar, Alexander P.
    Veelo, Denise P.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 324 (08): : 807 - 808
  • [42] Advancing Multiscale Molecular Modeling with Machine Learning-Derived Electrostatics
    Semelak, Jonathan A.
    Pickering, Ignacio
    Huddleston, Kate
    Olmos, Justo
    Grassano, Juan Santiago
    Clemente, Camila Mara
    Drusin, Salvador I.
    Marti, Marcelo
    Lebrero, Mariano Camilo Gonzalez
    Roitberg, Adrian E.
    Estrin, Dario A.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025,
  • [43] Interpreting Warn-on-Forecast System Guidance, Part I: Review of Probabilistic Guidance Concepts, Product Design, and Best Practices
    Skinner, Patrick S.
    Wilson, Katie A.
    Matilla, Brian C.
    Roberts, Brett
    Yussouf, Nusrat
    Burke, Patrick
    Heinselman, Pamela L.
    Gallo, Burkely T.
    Jones, Thomas A.
    Knopfmeier, Kent H.
    Flora, Montgomery L.
    Martin, Joshua
    Guerra, Jorge E.
    Lindley, T. Todd
    Gravelle, Chad
    Bieda, Stephen W., III
    JOURNAL OF OPERATIONAL METEOROLOGY, 2023, 11 (09) : 110 - 131
  • [44] A machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
    Schrutka, L.
    Anner, P.
    Agibetov, A.
    Seirer, B.
    Rettl, R.
    Duca, F.
    Dalos, D.
    Dachs, T.
    Binder, C.
    Badr-Eslam, R.
    Kastner, J.
    Beitzke, D.
    Loewe, C.
    Hengstenberg, C.
    Laufer, G.
    Stix, G.
    Dorffner, G.
    Bonderman, D.
    WIENER KLINISCHE WOCHENSCHRIFT, 2021, 133 (SUPPL 3) : S103 - S104
  • [45] A DIDACTIC APPROACH TO THE MACHINE LEARNING APPLICATION TO WEATHER FORECAST
    Raffaele, Marcello
    Caccamo, Maria Teresa
    Castorina, Giuseppe
    Lanza, Stefania
    Munao, Gianmarco
    Randazzo, Giovanni
    Magazu, Salvatore
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2021, 99 (S1):
  • [46] A machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
    Schrutka, L. Lore
    Anner, P.
    Seirer, B.
    Rettl, R.
    Duca, F.
    Dalos, D.
    Dachs, T. M.
    Binder, C.
    Badr-Eslam, R.
    Kastner, J.
    Hengstenberg, C.
    Laufer, G.
    Stix, G.
    Dorffner, G.
    Bonderman, D.
    EUROPEAN JOURNAL OF HEART FAILURE, 2021, 23 : 94 - 94
  • [47] Machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
    Schrutka, Lore
    Anner, Philip
    Agibetov, Asan
    Seirer, Benjamin
    Dusik, Fabian
    Rettl, Rene
    Duca, Franz
    Dalos, Daniel
    Dachs, Theresa-Marie
    Binder, Christina
    Badr-Eslam, Roza
    Kastner, Johannes
    Beitzke, Dietrich
    Loewe, Christian
    Hengstenberg, Christian
    Laufer, Guenther
    Stix, Guenter
    Dorffner, Georg
    Bonderman, Diana
    HEART, 2022, 108 (14) : 1137 - 1147
  • [48] A machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis
    Schrutka, L.
    Anner, P.
    Seirer, B.
    Rettl, R.
    Duca, F.
    Dalos, D.
    Dachs, T. M.
    Binder, C.
    Badr-Eslam, R.
    Kastner, J.
    Loewe, C.
    Hengstenberg, C.
    Stix, G.
    Dorffner, G.
    Bonderman, D.
    EUROPEAN HEART JOURNAL, 2021, 42 : 1801 - 1801
  • [49] A Machine Learning-derived Radiomics Nomogram for Diagnosis of Osteoporosis and Osteopenia
    Xie, Qianrong
    Chen, Yue
    Hu, Yimei
    Zeng, Fanwei
    Wang, Pingxi
    Xu, Lin
    Wu, Jianhong
    Li, Jie
    Zhu, Jing
    Xiang, Ming
    Zeng, Fanxin
    ARTHRITIS & RHEUMATOLOGY, 2020, 72
  • [50] Precision diagnostics based on machine learning-derived imaging signatures
    Davatzikos, Christos
    Sotiras, Aristeidis
    Fan, Yong
    Habes, Mohamad
    Erus, Guray
    Rathore, Saima
    Bakas, Spyridon
    Chitalia, Rhea
    Gastounioti, Aimilia
    Kontos, Despina
    MAGNETIC RESONANCE IMAGING, 2019, 64 : 49 - 61