Spatio-Temporal Graph Neural Networks for Aggregate Load Forecasting

被引:4
|
作者
Eandi, Simone [1 ]
Cini, Andrea [2 ]
Lukovic, Slobodan [2 ]
Alippi, Cesare [2 ,3 ]
机构
[1] Univ Svizzera Italiana, Lugano, Switzerland
[2] Univ Svizzera Italiana, IDSIA, Lugano, Switzerland
[3] Politecn Milan, Milan, Italy
关键词
Spatio-Temporal Graph Neural Network; Smart Grid; Electric Load Forecasting; ELECTRICITY;
D O I
10.1109/IJCNN55064.2022.9892780
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate forecasting of electricity demand is a core component of the modern electricity infrastructure. Several approaches exist that tackle this problem by exploiting modern deep learning tools. However, most previous works focus on predicting the total load as a univariate time series forecasting task, ignoring all fine-grained information captured by the smart meters distributed across the power grid. We introduce a methodology to account for this information in the graph neural network framework. In particular, we consider spatio-temporal graphs where each node is associated with the aggregate load of a cluster of smart meters, and a global graph-level attribute indicates the total load on the grid. We propose two novel spatio-temporal graph neural network models to process this representation and take advantage of both the finer-grained information and the relationships existing between the different clusters of meters. We compare these models on a widely used, openly available, benchmark against a competitive baseline which only accounts for the total load profile. Within these settings, we show that the proposed methodology improves forecasting accuracy.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Multi-Class Traffic Density Forecasting in IoV using Spatio-Temporal Graph Neural Networks
    Mehmood, Asif
    Khan, Talha Ahmed
    Muhammad, Afaq
    Song, Wang-Cheol
    2022 23RD ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS 2022), 2022, : 187 - 192
  • [22] Spatio-Temporal Action Graph Networks
    Herzig, Roei
    Levi, Elad
    Xu, Huijuan
    Gao, Hang
    Brosh, Eli
    Wang, Xiaolong
    Globerson, Amir
    Darrell, Trevor
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2347 - 2356
  • [23] COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for Traffic Forecasting
    Ju, Wei
    Zhao, Yusheng
    Qin, Yifang
    Yi, Siyu
    Yuan, Jingyang
    Xiao, Zhiping
    Luo, Xiao
    Yan, Xiting
    Zhang, Ming
    INFORMATION FUSION, 2024, 107
  • [24] Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph Neural Network
    Roy, Amit
    Roy, Kashob Kumar
    Ali, Amin Ahsan
    Amin, M. Ashraful
    Rahman, A. K. M. Mahbubur
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [25] Efficient Spatio-Temporal Randomly Wired Neural Networks for Traffic Forecasting
    Song, Li
    Bao, Kainan
    Ke, Songyu
    Li, Chunyang
    Zhang, Junbo
    Zheng, Yu
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1079 - 1086
  • [26] A Method of Traffic Flow Forecasting Using Spatio-Temporal Graph Convolutional Networks
    Fukuda, Renya
    Tanaka, Haruka
    Kasamatsu, Daisuke
    GCCE 2024 - 2024 IEEE 13th Global Conference on Consumer Electronics, 2024, : 500 - 501
  • [27] Spatio-Temporal Graph Convolutional Networks for Short-Term Traffic Forecasting
    Agafonov, Anton
    Yumaganov, Alexander
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [28] Spatio-Temporal Multi-graph Networks for Demand Forecasting in Online Marketplaces
    Gandhi, Ankit
    Aakanksha
    Kaveri, Sivaramakrishnan
    Chaoji, Vineet
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT IV, 2021, 12978 : 187 - 203
  • [29] Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting
    Yu, Bing
    Yin, Haoteng
    Zhu, Zhanxing
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3634 - 3640
  • [30] Spatio-Temporal Heterogeneous Graph Neural Networks for Estimating Time of Travel
    Wu, Lei
    Tang, Yong
    Zhang, Pei
    Zhou, Ying
    ELECTRONICS, 2023, 12 (06)