Approximate mining of maximal frequent itemsets in data streams with different window models

被引:10
|
作者
Li, Hua-Fu [1 ]
Lee, Suh-Yin [2 ]
机构
[1] Kainan Univ, Dept Comp Sci, Tao Yuan 338, Taiwan
[2] Natl Tsing Hua Univ, Dept Comp Sci, Hsinchu 300, Taiwan
关键词
data mining; data streams; maximal frequent itemsets; one-pass mining; approximate mining;
D O I
10.1016/j.eswa.2007.07.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A data stream is a massive, open-ended sequence of data elements continuously generated at a rapid rate. Mining data streams is more difficult than mining static databases because the huge, high-speed and continuous characteristics of streaming data. In this paper, we propose a new one-pass algorithm called DSM-MFI (stands for Data Stream Mining for Maximal Frequent Itemsets), which mines the set of all maximal frequent itemsets in landmark windows over data streams. A new summary data structure called summary frequent itemset forest (abbreviated as SFI-forest) is developed for incremental maintaining the essential information about maximal frequent itemsets embedded in the stream so far. Theoretical analysis and experimental studies show that the proposed algorithm is efficient and scalable for mining the set of all maximal frequent itemsets over the entire history of the data streams. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:781 / 789
页数:9
相关论文
共 50 条
  • [31] Maintaining Only Frequent Itemsets to Mine Approximate Frequent Itemsets over Online Data Streams
    Wang, Yongyan
    Li, Kun
    Wang, Hongan
    2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, : 381 - 388
  • [32] Mining approximate frequent itemsets from noisy data
    Liu, JZ
    Paulsen, S
    Wang, W
    Nobel, A
    Prins, J
    Fifth IEEE International Conference on Data Mining, Proceedings, 2005, : 721 - 724
  • [33] Mining maximal frequent itemsets from data streams (vol 33, pg 251, 2007)
    Mao, Guojun
    JOURNAL OF INFORMATION SCIENCE, 2007, 33 (04)
  • [34] An efficient approximate approach to mining frequent itemsets over high speed transactional data streams
    Jea, Kuen-Fang
    Li, Chao-Wei
    Chang, Tsui-Ping
    ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 3, PROCEEDINGS, 2008, : 275 - 280
  • [35] Mining Recent Frequent Itemsets over Data Streams with a Time-Sensitive Sliding Window
    Jin, Long
    Chai, Duck Jin
    Lee, Jun Wook
    Ryu, Keun Ho
    ADVANCES IN WEB AND NETWORK TECHNOLOGIES, AND INFORMATION MANAGEMENT, PROCEEDINGS, 2007, 4537 : 62 - +
  • [36] Efficiently mining maximal frequent itemsets
    Gouda, K
    Zaki, MJ
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 163 - 170
  • [37] On Maximal Frequent Itemsets Mining with Constraints
    Jabbour, Said
    Mana, Fatima Ezzahra
    Dlala, Imen Ouled
    Raddaoui, Badran
    Sais, Lakhdar
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, 2018, 11008 : 554 - 569
  • [38] A survey on algorithms for mining frequent itemsets over data streams
    Cheng, James
    Ke, Yiping
    Ng, Wilfred
    KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 16 (01) : 1 - 27
  • [39] A Novel Strategy for Mining Frequent Closed Itemsets in Data Streams
    Tang, Keming
    Dai, Caiyan
    Chen, Ling
    JOURNAL OF COMPUTERS, 2012, 7 (07) : 1564 - 1573
  • [40] Mining frequent itemsets in data streams within a time horizon
    Troiano, Luigi
    Scibelli, Giacomo
    DATA & KNOWLEDGE ENGINEERING, 2014, 89 : 21 - 37