Implementing Test Case Selection and Reduction Techniques using Meta-Heuristics

被引:0
|
作者
Nagar, Reetika [1 ]
Kumar, Arvind [2 ]
Kumar, Sachin [1 ]
Baghel, Anurag Singh [1 ]
机构
[1] Gautam Buddha Univ, Sch Informat & Commun Technol, Greater Noida, India
[2] Pitney Bowes Software, Noida, India
关键词
Particle Swarm Optimization; Genetic Algorithm; Regression Test Selection; Test Case Prioritization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Regression Testing is an inevitable and very costly maintenance activity that is implemented to make sure the validity of modified software in a time and resource constrained environment. Execution of entire test suite is not possible so it is necessary to apply techniques like Test Case Selection and Test Case Prioritization to select and prioritize a minimum set of test cases, fulfilling some chosen criteria, that is, covering all possible faults in minimum time and other. In this paper a test case reduction hybrid Particle Swarm Optimization (PSO) algorithm has been proposed. This PSO algorithm uses GA mutation operator while processing. PSO is a swarm intelligence algorithm based on particles behavior. GA is an evolutionary algorithm (EA). The proposed algorithm is an optimistic approach which provides optimum best results in minimum time.
引用
收藏
页码:837 / 842
页数:6
相关论文
共 50 条
  • [11] Meta-heuristics for Feature Selection and Classification in Diagnostic Breast Cancer
    Khafaga, Doaa Sami
    Alhussan, Amel Ali
    El-kenawy, El-Sayed M.
    Takieldeen, Ali E.
    Hassan, Tarek M.
    Hegazy, Ehab A.
    Eid, Elsayed Abdel Fattah
    Ibrahim, Abdelhameed
    Abdelhamid, Abdelaziz A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 748 - 765
  • [12] Massive Dimensions Reduction and Hybridization with Meta-heuristics in Deep Learning
    Khosrowshahli, Rasa
    Rahnamayan, Shahryar
    Ombuki-Berman, Beatrice
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 469 - 475
  • [13] Optimization of PEMFC Model Parameters Using Meta-Heuristics
    Mahdinia, Saeideh
    Rezaie, Mehrdad
    Elveny, Marischa
    Ghadimi, Noradin
    Razmjooy, Navid
    SUSTAINABILITY, 2021, 13 (22)
  • [14] Aerial Path Planning using Meta-Heuristics: A survey
    Pandey, Prashant
    Shukla, Anupam
    Tiwari, Ritu
    PROCEEDINGS OF THE 2017 IEEE SECOND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND COMMUNICATION TECHNOLOGIES (ICECCT), 2017,
  • [15] Tuning of generator excitation systems using meta-heuristics
    Viveros, E. R. C.
    Taranto, G. N.
    Falcao, D. M.
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 1196 - +
  • [16] Optimal Mine Extraction Sequencing Using Meta-heuristics
    Sari, Y. A.
    Kumral, M.
    Proceedings of the 24th International Mining Congress and Exhibition of Turkey, IMCET 2015, 2015, : 764 - 767
  • [17] Brain-computer interface channel selection optimization using meta-heuristics and evolutionary algorithms
    Martinez-Cagigal, Victor
    Santamaria-Vazquez, Eduardo
    Hornero, Roberto
    APPLIED SOFT COMPUTING, 2022, 115
  • [18] ACTUM -tool for automatic class testing using meta-heuristics
    Neetu, G.
    2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2022, 2022,
  • [19] Optimisation of solar photovoltaic (PV) parameters using meta-heuristics
    Obiora, Valentine
    Saha, Chitta
    Al Bazi, Ammar
    Guha, Koushik
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2021, 27 (08): : 3161 - 3169
  • [20] Improved Seam Carving using Meta-Heuristics Algorithms Combination
    Aghchehkohal, Mandi Gholipour
    Kumara, W. G. C. W.
    2015 SIGNAL PROCESSING AND INTELLIGENT SYSTEMS CONFERENCE (SPIS), 2015, : 43 - 47