Sharp weighted convolution inequalities and some applications

被引:12
|
作者
Guo, Weichao [1 ]
Fan, Dashan [2 ]
Wu, Huoxiong [3 ]
Zhao, Guoping [4 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Wisconsin, Dept Math, Milwaukee, WI 53201 USA
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[4] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Peoples R China
基金
中国博士后科学基金;
关键词
weighted convolution inequalities; fractional integrals; discrete analogue; characterization; modulation spaces; NAVIER-STOKES EQUATIONS; FRACTIONAL INTEGRALS; MODULATION SPACES; FOURIER MULTIPLIERS; NORM INEQUALITIES; RADIAL FUNCTIONS; TRANSFORMS; OPERATORS; THEOREMS;
D O I
10.4064/sm8583-5-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The index groups for which weighted Young inequalities hold in both the continuous case and discrete case are characterized. As applications, the index groups for the product inequalities on modulation spaces are characterized, and we also obtain the weakest conditions for the boundedness of bilinear Fourier multipliers on modulation spaces. For the fractional integral operator, sharp conditions for the power weighted L-p - L-q estimates in both the continuous and discrete cases are obtained. By a novel unified approach, we complete some previous results on sharp conditions for some classical inequalities.
引用
收藏
页码:201 / 239
页数:39
相关论文
共 50 条
  • [31] Two weighted inequalities for convolution maximal operators
    Bernardis, AL
    Martín-Reyes, FJ
    PUBLICACIONS MATEMATIQUES, 2002, 46 (01) : 119 - 138
  • [32] Sharp and weighted inequalities for multilinear integral operators
    Liu Lanzhe
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2007, 101 (01) : 99 - 111
  • [33] ON ONE WEIGHTED INEQUALITIES FOR CONVOLUTION TYPE OPERATOR
    Bandaliev, R. A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (03): : 199 - 210
  • [34] DOUBLY WEIGHTED SHARP WIRTINGER INEQUALITIES ON R
    Rong, Huang
    Yu, Xiaochen
    Ma, Mengjin
    Xu, Guiqiao
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (02) : 541 - 553
  • [35] SHARP L(P)-WEIGHTED SOBOLEV INEQUALITIES
    PEREZ, C
    ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) : 809 - &
  • [36] Sharp weighted inequalities for harmonic maximal operators
    Osekowski, Adam
    Rapicki, Mateusz
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 140 - 153
  • [37] The sharp weighted maximal inequalities for noncommutative martingales
    Galazka, Tomasz
    Jiao, Yong
    Osekowski, Adam
    Wu, Lian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [38] Sharp conditions for weighted Sobolev interpolation inequalities
    Chua, SK
    FORUM MATHEMATICUM, 2005, 17 (03) : 461 - 478
  • [39] On sharp reiteration theorems and weighted norm inequalities
    Bastero, J
    Milman, M
    Ruiz, FJ
    STUDIA MATHEMATICA, 2000, 142 (01) : 7 - 24
  • [40] Weighted L-p Norm Inequalities for Various Convolution Type Transformations and their Applications
    Nguyen Du Vi Nha
    Dinh Thanh Duc
    Vu Kim Tuan
    ARMENIAN JOURNAL OF MATHEMATICS, 2008, 1 (04): : 1 - 18