A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine

被引:186
|
作者
Wang, Deyun [1 ,2 ,3 ]
Wei, Shuai [1 ,2 ]
Luo, Hongyuan [1 ,2 ]
Yue, Chenqiang [1 ,2 ]
Grunder, Olivier [3 ]
机构
[1] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Mineral Resource Strategy & Policy Res Ctr, Wuhan 430074, Peoples R China
[3] Univ Bourgogne Franche Comte, UTBM, IRTES, Rue Thierry Mieg, F-90010 Belfort, France
基金
中国国家自然科学基金;
关键词
Air quality index (AQI); Complementary ensemble empirical mode decomposition (CEEMD); Variational mode decomposition (VMD); Differential evolution (DE); Extreme learning machine (ELM); ARTIFICIAL NEURAL-NETWORKS; HIDDEN MARKOV MODEL; PARTICULATE MATTER; ENSEMBLE MODEL; PM2.5; PREDICTION; REGRESSION; ARIMA;
D O I
10.1016/j.scitotenv.2016.12.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 733
页数:15
相关论文
共 50 条
  • [21] A novel hybrid prediction model of air quality index based on variational modal decomposition and CEEMDAN-SE-GRU
    Tang, Chaoli
    Wang, Ziyu
    Wei, Yuanyuan
    Zhao, Zhiwei
    Li, Wenyan
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 191 : 2572 - 2588
  • [22] A novel hybrid intelligent model for molten iron temperature forecasting based on machine learning
    Xu, Wei
    Liu, Jingjing
    Li, Jinman
    Wang, Hua
    Xiao, Qingtai
    AIMS MATHEMATICS, 2024, 9 (01): : 1227 - 1247
  • [23] Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index
    Khan, Idris
    Zhu, Honglu
    Yao, Jianxi
    Khan, Danish
    Iqbal, Tahir
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2017, 2017
  • [24] A Novel Extreme Learning Machine Based on Hybrid Kernel Function
    Ding, Shifei
    Zhang, Yanan
    Xu, Xinzheng
    Bao, Lina
    JOURNAL OF COMPUTERS, 2013, 8 (08) : 2110 - 2117
  • [25] Proposing two novel hybrid intelligence models for forecasting copper price based on extreme learning machine and meta-heuristic algorithms
    Zhang, Hong
    Hoang Nguyen
    Bui, Xuan-Nam
    Pradhan, Biswajeet
    Ngoc-Luan Mai
    Diep-Anh Vu
    RESOURCES POLICY, 2021, 73
  • [26] A novel hybrid algorithm with static and dynamic models for air quality index forecasting
    Zhao, Xuan
    Wu, Zhenhai
    Qiu, Jingyi
    Wei, Yiheng
    NONLINEAR DYNAMICS, 2023, 111 (14) : 13187 - 13199
  • [27] A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms
    Sharma, Ekta
    Deo, Ravinesh C.
    Prasad, Ramendra
    Parisi, Alfio, V
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 709
  • [28] A novel hybrid algorithm with static and dynamic models for air quality index forecasting
    Xuan Zhao
    Zhenhai Wu
    Jingyi Qiu
    Yiheng Wei
    Nonlinear Dynamics, 2023, 111 : 13187 - 13199
  • [29] An Improved Air Quality Index Machine Learning-Based Forecasting with Multivariate Data Imputation Approach
    Alkabbani, Hanin
    Ramadan, Ashraf
    Zhu, Qinqin
    Elkamel, Ali
    ATMOSPHERE, 2022, 13 (07)
  • [30] A Mean Model Based Incremental Learning Technique for Extreme Learning Machine
    Vidhya, M.
    Aji, S.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 541 - 547