Outlier detection and robust regression for correlated data

被引:47
|
作者
Yuen, Ka-Veng [1 ]
Ortiz, Gilberto A. [1 ]
机构
[1] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
关键词
Bayesian inference; Correlated noise; Maximum likelihood; Model updating; Outlier detection; BAYESIAN PROBABILISTIC APPROACH; PARAMETER-ESTIMATION; HYSTERETIC SYSTEMS; DYNAMICAL-SYSTEMS; BOOTSTRAP FILTER; IDENTIFICATION; MODELS; UNCERTAINTIES; DISTRIBUTIONS; ALGORITHMS;
D O I
10.1016/j.cma.2016.10.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Outlier detection has attracted considerable interest in various areas. Existing outlier detection methods usually assume independence of the modeling errors among the data points but this assumption does not hold in a number of applications. In this paper we propose a probabilistic method for outlier detection and robust updating of linear regression problems involving correlated data. First, suspicious data points will be identified using the minimum volume ellipsoid method and the maximum trimmed likelihood method. Then, the outlierness of each suspicious data point will be determined according to the proposed outlier probability in consideration of possible correlation among the data points. The proposed method is assessed and validated through simulated and real data. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:632 / 646
页数:15
相关论文
共 50 条
  • [31] Outlier detection in regression models with ARIMA errors using robust estimates
    Bianco, AM
    Ben, MG
    Martínez, EJ
    Yohai, VJ
    JOURNAL OF FORECASTING, 2001, 20 (08) : 565 - 579
  • [32] ROBUST REGRESSION AND OUTLIER DETECTION FOR NONLINEAR MODELS USING GENETIC ALGORITHMS
    VANKEERBERGHEN, P
    SMEYERSVERBEKE, J
    LEARDI, R
    KARR, CL
    MASSART, DL
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 28 (01) : 73 - 87
  • [33] Outlier detection by means of robust regression estimators for use in engineering science
    Hekimoglu, Serif
    Erenoglu, R. Cuneyt
    Kalina, Jan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2009, 10 (06): : 909 - 921
  • [34] On the outlier detection in nonlinear regression
    Hossein Riazoshams, A.
    Midi Habshah, B.
    Mohamad Bakri Adam, C.
    World Academy of Science, Engineering and Technology, 2009, 36 : 264 - 270
  • [35] Exploring process data with the use of robust outlier detection algorithms
    Chiang, LH
    Pell, RJ
    Seasholtz, MB
    JOURNAL OF PROCESS CONTROL, 2003, 13 (05) : 437 - 449
  • [36] Outlier detection and robust estimation in linear regression models with fixed group effects
    Perez, Betsabe
    Molina, Isabel
    Pena, Daniel
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (12) : 2652 - 2669
  • [37] Robust regression and outlier detection in the evaluation of robustness tests with different experimental designs
    Hund, E
    Massart, DL
    Smeyers-Verbeke, J
    ANALYTICA CHIMICA ACTA, 2002, 463 (01) : 53 - 73
  • [38] Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data
    de Cheveigne, Alain
    Arzounian, Dorothee
    NEUROIMAGE, 2018, 172 : 903 - 912
  • [39] Robust local outlier detection with statistical parameter for big data
    Lei, Jingsheng
    Jiang, Teng
    Wu, Kui
    Du, Haizhou
    Zhu, Lin
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2015, 30 (05): : 411 - 419
  • [40] Robust principal component analysis and outlier detection with ecological data
    Jackson, DA
    Chen, Y
    ENVIRONMETRICS, 2004, 15 (02) : 129 - 139