General lower bounds on convex functionals of aggregate sums

被引:18
|
作者
Cheung, Ka Chun [1 ]
Lo, Ambrose [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
来源
INSURANCE MATHEMATICS & ECONOMICS | 2013年 / 53卷 / 03期
关键词
Convex functionals; Aggregate risks; Counter-monotonicity; Mutual exclusivity; Tail Value-at-Risk; Haezendonck-Goovaerts risk measures; GOOVAERTS RISK MEASURES; COMPLETE MIXABILITY; COMONOTONICITY;
D O I
10.1016/j.insmatheco.2013.10.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
The determination of the dependence structure giving rise to the minimal convex sum in a general Frechet space is a practical, yet challenging problem in quantitative risk management. In this article, we consider the closely related problem of finding lower bounds on three kinds of convex functionals, namely, convex expectations, Tail Value-at-Risk and the Haezendonck-Goovaerts risk measure, of a sum of random variables with arbitrary distributions. The sharpness of the lower bounds on the first two types of convex functionals is characterized via the extreme negative dependence structure of mutual exclusivity. Compared to existing results in the literature, our new lower bounds enjoy the advantages of generality and analytic tractability. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:884 / 896
页数:13
相关论文
共 50 条
  • [21] Lower bounds for sums of eigenvalues of the buckling problem
    Liu, Pan
    MONATSHEFTE FUR MATHEMATIK, 2022, 198 (03): : 591 - 618
  • [22] Upper and lower bounds for sums of random variables
    Kaas, R
    Dhaene, J
    Goovaerts, MJ
    INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (02): : 151 - 168
  • [23] On the lower bounds of the partial sums of a Dirichlet series
    Mora, G.
    Benitez, E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [24] LOWER BOUNDS FOR COMPLETE RATIONAL TRIGONOMETRIC SUMS
    ZINOVEV, VA
    LITSYN, SN
    RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (01) : 259 - 260
  • [25] Exponential Lower Bounds via Exponential Sums
    Chennai Mathematical Institute, India
    不详
    不详
    Leibniz Int. Proc. Informatics, LIPIcs,
  • [26] Lower bounds on multiple distinct sums sets
    Chen, W
    Klove, T
    DISCRETE MATHEMATICS, 1996, 148 (1-3) : 15 - 35
  • [27] On the lower bounds of the partial sums of a Dirichlet series
    G. Mora
    E. Benítez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [28] Lower Bounds on Odd Order Character Sums
    Goldmakher, Leo
    Lamzouri, Youness
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (21) : 5006 - 5013
  • [29] Lower bounds for sums of eigenvalues of the buckling problem
    Pan Liu
    Monatshefte für Mathematik, 2022, 198 : 591 - 618
  • [30] Bounds for some general sums of random variables
    Landsman, Zinoviy
    Vanduffel, Steven
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (03) : 382 - 391