Long-Term Cycling Studies on Electrospun Carbon Nanofibers as Anode Material for Lithium Ion Batteries

被引:97
|
作者
Wu, Yongzhi [1 ,2 ,3 ]
Reddy, M. V. [2 ]
Chowdari, B. V. R. [2 ]
Ramakrishna, S. [3 ]
机构
[1] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 119260, Singapore
[2] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[3] NUS, NUS Nanosci & Nanotechnol Initiat, Ctr Nanofibers & Nanotechnol, Dept Mech Engn, Singapore 117581, Singapore
关键词
electrospun CNF; long-term cycling; lithium ion battery; anode material; LI-ION; HIGH-PERFORMANCE; COMPOSITE NANOFIBERS; ENERGY-CONVERSION; INSERTION; STORAGE; CARBONIZATION; EVOLUTION; GRAPHITE; CAPACITY;
D O I
10.1021/am404216j
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrospun carbon nanofibers (CNF) have been prepared at different calcination temperatures for a prolonged time (12 h) derived from electrospun polyacrylonitrile (PAN) membranes. They are studied as anode materials in lithium ion batteries due to their high reversible capacity, improved longterm cycle performance, and good rate capacity. The fibrous morphologies of fresh electrodes and tested samples for more than 550 cycles have been compared; cyclic voltammogram (CV) has also been studied to understand the lithium intercalation/deintercalation mechanism of ID nanomaterials. CNFs demonstrate interesting galvanostatic performance with fading capacity after the first few cycles, and the capacity increases during long-term cycling. The increasing capacity is observed accompanied by volumetric expansion on the nanofibers' edge. Results of rate capacity have also been explored for all CNF samples, and their stable electrochemical performances are further analyzed by the galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS). CNF carbonized at 800 C is found to have a larger lithium ion storage ability and better cyclic stability than that carbonized at 600 and 1000 C.
引用
收藏
页码:12175 / 12184
页数:10
相关论文
共 50 条
  • [21] Enhanced electrochemical properties of ZnO encapsulated in carbon nanofibers as anode material for lithium-ion batteries
    Yuhao Li
    Mingyu Zhang
    Qizhong Huang
    Peng Zhou
    Ping Xu
    Zhenghao Guo
    Kaibin Dai
    Ionics, 2020, 26 : 4351 - 4361
  • [22] Amorphous Silicon-Coated Carbon Nanofibers Composite as Anode Material for Lithium-Ion Batteries
    Ghanbari, E.
    Saatchi, A. R.
    Raeissi, K.
    Saatchi, A.
    Tavanai, H.
    THERMEC 2011, PTS 1-4, 2012, 706-709 : 1029 - +
  • [23] Enhanced electrochemical properties of ZnO encapsulated in carbon nanofibers as anode material for lithium-ion batteries
    Li, Yuhao
    Zhang, Mingyu
    Huang, Qizhong
    Zhou, Peng
    Xu, Ping
    Guo, Zhenghao
    Dai, Kaibin
    IONICS, 2020, 26 (09) : 4351 - 4361
  • [24] Insight into a Nitrogen-Doping Mechanism in a Hard-Carbon-Microsphere Anode Material for the Long-Term Cycling of Potassium-Ion Batteries
    Chen, Changdong
    Zhao, Kai
    La, Ming
    Yang, Chenghao
    MATERIALS, 2022, 15 (12)
  • [25] Long-term cycling stability of porous Sn anode for sodium-ion batteries
    Kim, Changhyeon
    Lee, Ki-Young
    Kim, Icpyo
    Park, Jinsoo
    Cho, Gyubong
    Kim, Ki-Won
    Ahn, Jou-Hyeon
    Ahn, Hyo-Jun
    JOURNAL OF POWER SOURCES, 2016, 317 : 153 - 158
  • [26] Carbon Allotropes as Anode Material for Lithium-Ion Batteries
    Rajkamal, A.
    Thapa, Ranjit
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (10):
  • [27] The role of graphene in nano-layered structure and long-term cycling stability of MnxCoyNizCO3 as an anode material for lithium-ion batteries
    Li, Qing
    Wang, Chao
    Li, Qingqing
    Che, Renchao
    RSC ADVANCES, 2016, 6 (107): : 105252 - 105261
  • [28] Mechanical constraining double-shell protected Si-based anode material for lithium-ion batteries with long-term cycling stability
    Zhang, Yan
    Li, Bisai
    Tang, Bin
    Yao, Zeen
    Zhang, Xiongjie
    Liu, Zhifeng
    Gong, Runlong
    Zhao, Pengpeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 846
  • [29] Lithium molybdate composited with carbon nanofibers as a high-capacity and stable anode material for lithium-ion batteries
    Wang, Jiaqi
    Yao, Junyi
    Li, Wanying
    Zhu, Wenhao
    Yang, Jie
    Zhao, Jianqing
    Gao, Lijun
    ENERGY MATERIALS, 2022, 2 (04):
  • [30] Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries
    Wu, Qingliu
    Tran, Toan
    Lu, Wenquan
    Wu, Ji
    JOURNAL OF POWER SOURCES, 2014, 258 : 39 - 45