An estimate of the number of limit cycles via critical points of conditional extremum

被引:0
|
作者
Cherkas, LA [1 ]
机构
[1] Belarus State Univ Comp Sci & Radio Elect, Minsk, BELARUS
关键词
D O I
10.1023/B:DIEQ.0000017914.51618.21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1404 / 1413
页数:10
相关论文
共 50 条
  • [31] THE NUMBER OF LIMIT CYCLES OF JOSEPHSON EQUATION
    Yu, Xiangqin
    Chen, Hebai
    Liu, Changjian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (07): : 2947 - 2971
  • [32] An upper estimate for the number of limit cycles of even-degree Liénard equations in the focus case
    G. Kolutsky
    Journal of Dynamical and Control Systems, 2011, 17
  • [33] Generating limit cycles from a nilpotent critical point via normal forms
    Alvarez, MJ
    Gasull, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) : 271 - 287
  • [34] NUMBER OF LIMIT CYCLES OF A CASE OF POLYNOMIAL SYSTEM VIA THE STABILITY-CHANGING METHOD
    Zhou, Jianan
    Sheng, Lijuan
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (01): : 392 - 407
  • [35] A SHARP ESTIMATE OF THE NUMBER OF INTEGRAL POINTS IN A TETRAHEDRON
    XU, YJ
    YAU, SST
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 423 : 199 - 219
  • [36] The estimate of the amplitude of limit cycles of symmetric Lienard systems
    Cao, Yuli
    Liu, Changjian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 2025 - 2038
  • [37] Forecasting critical points and post-critical limit cycles in nonlinear oscillatory systems using pre-critical transient responses
    Ghadami, Amin
    Epureanu, Bogdan I.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 101 : 146 - 156
  • [38] THE NUMBER OF LIMIT CYCLES OF THE FITZHUGH NERVE SYSTEM
    Chen, Hebai
    Xie, Jianhua
    QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (02) : 365 - 378
  • [39] On the Number of Limit Cycles in Diluted Neural Networks
    Hwang, Sungmin
    Lanza, Enrico
    Parisi, Giorgio
    Rocchi, Jacopo
    Ruocco, Giancarlo
    Zamponi, Francesco
    JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (06) : 2304 - 2321
  • [40] Quadratic systems with maximum number of limit cycles
    L. A. Cherkas
    Differential Equations, 2009, 45 : 1440 - 1450