Low-Rank Correlation Analysis for Discriminative Subspace Learning

被引:0
|
作者
Zheng, Jiacan [1 ]
Lai, Zhihui [1 ,2 ]
Lu, Jianglin [1 ]
Zhou, Jie [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Comp Vis Inst, Shenzhen 518060, Peoples R China
[2] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
来源
关键词
Dimensionality reduction; Low-rank representation; Dictionary learning; FACE-RECOGNITION;
D O I
10.1007/978-3-031-02444-3_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linear dimensionality reduction is a commonly used technique to solve the curse of dimensionality problem in pattern recognition. However, learning a discriminative subspace without label is still a challenging problem, especially when the high-dimensional data is grossly corrupted. To address this problem, we propose an unsupervised dimensionality reduction method called Low-Rank Correlation Analysis (LRCA). The proposed model integrates the low-rank representation and the linear embedding together with a seamless formulation. As such, the robustness and discriminative ability of the learned subspace can be effectively promoted together. An iterative algorithm equipped with alternating direction method of multiplier (ADMM) and eigendecomposition is designed to solve the optimization problem. Experiments show that our method is more discriminative and robust than some existing methods.
引用
下载
收藏
页码:87 / 100
页数:14
相关论文
共 50 条
  • [31] Generalized Transfer Subspace Learning Through Low-Rank Constraint
    Ming Shao
    Dmitry Kit
    Yun Fu
    International Journal of Computer Vision, 2014, 109 : 74 - 93
  • [32] Tensor low-rank sparse representation for tensor subspace learning
    Du, Shiqiang
    Shi, Yuqing
    Shan, Guangrong
    Wang, Weilan
    Ma, Yide
    NEUROCOMPUTING, 2021, 440 : 351 - 364
  • [33] Survey of subspace learning via low-rank sparse representation
    Wu J.
    Chen Z.
    Meng M.
    Xie J.
    1600, Huazhong University of Science and Technology (49): : 1 - 19
  • [34] Subspace Clustering via Learning an Adaptive Low-Rank Graph
    Yin, Ming
    Xie, Shengli
    Wu, Zongze
    Zhang, Yun
    Gao, Junbin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (08) : 3716 - 3728
  • [35] Robust Discriminative Feature Subspace Learning Based on Low Rank Representation
    Li Ao
    Liu Xin
    Chen Deyun
    Zhang Yingtao
    Sun Guanglu
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (05) : 1223 - 1230
  • [36] Distributed Low-rank Subspace Segmentation
    Talwalkar, Ameet
    Mackey, Lester
    Mu, Yadong
    Chang, Shih-Fu
    Jordan, Michael I.
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 3543 - 3550
  • [37] Deep Low-Rank Subspace Clustering
    Kheirandishfard, Mohsen
    Zohrizadeh, Fariba
    Kamangar, Farhad
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3767 - 3772
  • [38] Fast Low-Rank Subspace Segmentation
    Zhang, Xin
    Sun, Fuchun
    Liu, Guangcan
    Ma, Yi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (05) : 1293 - 1297
  • [39] Learning Low-Rank and Sparse Discriminative Correlation Filters for Coarse-to-Fine Visual Object Tracking
    Xu, Tianyang
    Feng, Zhen-Hua
    Wu, Xiao-Jun
    Kittler, Josef
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (10) : 3727 - 3739
  • [40] Low-rank graph preserving discriminative dictionary learning for image recognition
    Du, Haishun
    Ma, Luogang
    Li, Guodong
    Wang, Sheng
    KNOWLEDGE-BASED SYSTEMS, 2020, 187