On higher eta-invariants and metrics of positive scalar curvature

被引:25
|
作者
Leichtnam, E
Piazza, P
机构
[1] Inst Jussieu Chevaleret, F-75013 Paris, France
[2] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
来源
K-THEORY | 2001年 / 24卷 / 04期
关键词
bordism groups; positive scalar curvature metrics; Galois coverings; higher eta-invariants; higher rho-invariants; b-pseudodifferential calculus; higher APS index formula;
D O I
10.1023/A:1014079307698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a closed connected spin manifold admitting one metric of positive scalar curvature. In this paper we use the higher eta-invariant associated to the Dirac operator on N in order to distinguish metrics of positive scalar curvature on N. In particular, we give sufficient conditions, involving pi(1)(N) and dim N, for N to admit an infinite number of metrics of positive scalar curvature that are nonbordant.
引用
收藏
页码:341 / 359
页数:19
相关论文
共 50 条