On the Motion of Vortex Sheets with Surface Tension in Three-Dimensional Euler Equations with Vorticity

被引:38
|
作者
Cheng, Ching-Hsiao Arthur [1 ]
Coutand, Daniel [3 ]
Shkoller, Steve [2 ]
机构
[1] Univ Maryland, CSCAMM, College Pk, MD 20740 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Heriot Watt Univ, Sch Math & Comp Sci MACS, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1002/cpa.20240
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1715 / 1752
页数:38
相关论文
共 50 条
  • [31] Uncoupled solution of the three-dimensional vorticity-velocity equations
    Quartapelle, L
    Ruas, V
    Zhu, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (03): : 384 - 400
  • [32] Stabilization effect of elasticity on three-dimensional compressible vortex sheets
    Chen, Robin Ming
    Huang, Feimin
    Wang, Dehua
    Yuan, Difan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 172 : 105 - 138
  • [33] Uncoupled solution of the three-dimensional vorticity-velocity equations
    L. Quartapelle
    V. Ruas
    J. Zhu
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 384 - 400
  • [34] Three-dimensional ageostrophic motion in mesoscale vortex dipoles
    Pallas-Sanz, Enric
    Viudez, Alvaro
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2007, 37 (01) : 84 - 105
  • [35] Motion of three-dimensional vortex filament and particle transport
    Kimura, Yoshi
    IUTAM Symposium on Elementary Vortices and Coherent Structures: Significance in Turbulence Dynamics, 2006, 79 : 275 - 282
  • [36] Thresholds in three-dimensional restricted Euler-Poisson equations
    Lee, Yongki
    Liu, Hailiang
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 262 : 59 - 70
  • [37] The three-dimensional Euler equations: Where do we stand?
    Gibbon, J. D.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (14-17) : 1894 - 1904
  • [38] Hyperbolicity and optimal coordinates for the three-dimensional supersonic Euler equations
    Hui, WH
    He, YP
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (04) : 893 - 928
  • [39] The three-dimensional Euler equations: singular or non-singular?
    Gibbon, J. D.
    Bustamante, M.
    Kerr, R. M.
    NONLINEARITY, 2008, 21 (08) : T123 - T129
  • [40] On the regularity of three-dimensional rotating Euler-Boussinesq equations
    Babin, A
    Mahalov, A
    Nicolaenko, B
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (07): : 1089 - 1121