On the small-weight codewords of some Hermitian codes

被引:9
|
作者
Marcolla, Chiara [1 ]
Pellegrini, Marco [2 ]
Sala, Massimiliano [1 ]
机构
[1] Univ Trento, Dept Math, Trento, Italy
[2] Univ Florence, Dept Math, I-50121 Florence, Italy
关键词
Affine-variety code; Hamming weight; Hermitian code; Hermitian curve; Linear code; Minimum-weight words;
D O I
10.1016/j.jsc.2015.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For any affine-variety code we show how to construct an ideal whose solutions correspond to codewords with any assigned weight. We are able to obtain geometric characterizations for small-weight codewords for some families of Hermitian codes over any Fe. From these geometric characterizations, we obtain explicit formulas. In particular, we determine the number of minimum-weight codewords for all Hermitian codes with d <= q and all second-weight codewords for distance-3,4 codes. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 45
页数:19
相关论文
共 50 条
  • [21] Efficient Algorithms for Constructing Minimum-Weight Codewords in Some Extended Binary BCH Codes
    Berman, Amit
    Shany, Yaron
    Tamo, Itzhak
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 7673 - 7689
  • [22] Weight distribution of the hermitian forms codes
    Cherdieu, JP
    Delcroix, A
    Mado, JC
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (04) : 307 - 314
  • [23] Weight Distribution of the Hermitian Forms Codes
    J. P. Cherdieu
    A. Delcroix
    J. C. Mado
    D. J. Mercier
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 307 - 314
  • [24] Weight distribution of the Hermitian forms codes
    Cherdieu, J.P.
    Delcroix, A.
    Mado, J.C.
    Mercier, D.J.
    Applicable Algebra in Engineering, Communications and Computing, 1997, 8 (04): : 307 - 314
  • [25] Second weight codewords of generalized Reed-Muller codes
    Elodie Leducq
    Cryptography and Communications, 2013, 5 : 241 - 276
  • [26] A characterization of Hermitian varieties as codewords
    Aguglia, Angela
    Bartoli, Daniele
    Storme, Leo
    Weiner, Zsuzsa
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [27] Minimal codewords: An application of relative four-weight codes
    Rega, B.
    Babu, A. Ramesh
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (05)
  • [28] On the Number of Minimum Weight Codewords of SFA-LDPC Codes
    Kaji, Yuichi
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 70 - 74
  • [29] On the Minimum-Weight Codewords of Array LDPC Codes with Column Weight 4
    Liu, Haiyang
    Deng, Gang
    Chen, Jie
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (11) : 2236 - 2246
  • [30] STUDYING THE LOCATOR POLYNOMIALS OF MINIMUM WEIGHT CODEWORDS OF BCH CODES
    AUGOT, D
    CHARPIN, P
    SENDRIER, N
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) : 960 - 973