Quantum Effects in the Diffusion of Hydrogen on Ru(0001)

被引:60
|
作者
McIntosh, Eliza M. [1 ]
Wikfeldt, K. Thor [2 ,3 ,4 ]
Ellis, John [1 ]
Michaelides, Angelos [2 ,3 ]
Allison, William [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[2] UCL, Thomas Young Ctr, London Ctr Nanotechnol, London WC1E 6BT, England
[3] UCL, Dept Chem, London WC1E 6BT, England
[4] Univ Iceland, Inst Sci, VR 3, IS-107 Reykjavik, Iceland
来源
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
TRANSITION-STATE THEORY; SCANNING-TUNNELING-MICROSCOPY; SURFACE-DIFFUSION; MONTE-CARLO; ADSORPTION STATES; METAL-SURFACE; TEMPERATURE; NI(111); SITES; ATOMS;
D O I
10.1021/jz400622v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An understanding of hydrogen diffusion on metal surfaces is important not only for its role in heterogeneous catalysis and hydrogen fuel cell technology but also because it provides model systems where tunneling can be studied under well-defined conditions. Here we report helium spin echo measurements of the atomic scale motion of hydrogen on the Ru(0001) surface between 75 and 250 K. Quantum effects are evident at temperatures as high as 200 K, while below 120 K we observe a tunneling-dominated temperature-independent jump rate of 1.9 x 10(9) s(-1), many orders of magnitude faster than previously seen. Quantum transition-state theory calculations based on ab initio path-integral simulations reproduce the temperature dependence of the rate at higher temperatures and predict a crossover to tunneling-dominated diffusion at low temperatures. However, the tunneling rate is underestimated, highlighting the need for future experimental and theoretical studies of hydrogen diffusion on this and other well-defined surfaces.
引用
收藏
页码:1565 / 1569
页数:5
相关论文
共 50 条
  • [21] First-Principles Calculations of the Quantum Size Effects on the Stability and Reactivity of Ultrathin Ru (0001) Films
    武明义
    贾瑜
    孙强
    Chinese Physics Letters, 2015, (06) : 135 - 139
  • [22] Effects of thermal activation on the electrocatalysis of the Ru(0001) surface
    Lin, WF
    Jin, JM
    Christensen, PA
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2002, 18 (02) : 139 - 145
  • [23] Quantum diffusion of hydrogen
    Dattagupta, S
    BULLETIN OF MATERIALS SCIENCE, 1996, 19 (01) : 15 - 28
  • [24] Ru(0001) and SiO2/Ru(0001): XPS study
    Khaniya, Asim
    Ezzat, Sameer
    Cumston, Quintin
    Coffey, Kevin R.
    Kaden, William E.
    SURFACE SCIENCE SPECTRA, 2020, 27 (02):
  • [25] Vibrationally enhanced associative photodesorption of molecular hydrogen from Ru(0001)
    Vazhappilly, Tijo
    Beyvers, Stephanie
    Klamroth, Tillmann
    Luppi, Marcello
    Saalfrank, Peter
    CHEMICAL PHYSICS, 2007, 338 (2-3) : 299 - 311
  • [26] The dynamic interaction of CO with Ru(0001) in the presence of adsorbed CO and hydrogen
    Riedmüller, B
    Ciobîca, IM
    Papageorgopoulos, DC
    Berenbak, B
    van Santen, RA
    Kleyn, AW
    SURFACE SCIENCE, 2000, 465 (03) : 347 - 360
  • [27] INTERACTION OF HYDROGEN WITH NITROGEN-ATOMS CHEMISORBED ON A RU(0001) SURFACE
    SHI, H
    JACOBI, K
    ERTL, G
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (03): : 1432 - 1439
  • [28] Mechanisms of Pyrrole Hydrogenation on Ru(0001) and Hydrogen Molybdenum Bronze Surfaces
    Xi, Yongjie
    Huang, Liang
    Cheng, Hansong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (39): : 22477 - 22485
  • [29] THE USE OF CU OVERLAYERS TO QUANTIFY SUBSURFACE HYDROGEN ON RU(0001) BY TITRATION
    PEDEN, CHF
    GOODMAN, DW
    HOUSTON, JE
    YATES, JT
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 117 - COLL
  • [30] Surface diffusion of gold nanoclusters on Ru(0001): effects of cluster size, surface defects and adsorbed oxygen atoms
    Stein, Ori
    Ankri, Jonathan
    Asscher, Micha
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (32) : 13506 - 13512