An Improved Early Termination Sparse Interpolation Algorithm for Multivariate Polynomials

被引:1
|
作者
Huang, Qiaolong [1 ]
机构
[1] Chinese Acad Sci, Key Lab Math Mechanizat, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Ben-Or and Tiwari's algorithm; early termination algorithm; recursive sparse interpolation;
D O I
10.1007/s11424-017-6143-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an improved early termination algorithm for sparse black box multivariate polynomials, which reduces the interpolation problem into several sub-interpolation problems with less variables and fewer terms. Actually, all interpolations are eventually reduced to the interpolation of a list of polynomials with less terms than that of the original polynomial. Extensive experiments show that the new algorithm is much faster than the original algorithm.
引用
收藏
页码:539 / 551
页数:13
相关论文
共 50 条
  • [1] An Improved Early Termination Sparse Interpolation Algorithm for Multivariate Polynomials
    HUANG Qiaolong
    JournalofSystemsScience&Complexity, 2018, 31 (02) : 539 - 551
  • [2] An Improved Early Termination Sparse Interpolation Algorithm for Multivariate Polynomials
    Qiaolong Huang
    Journal of Systems Science and Complexity, 2018, 31 : 539 - 551
  • [3] A new algorithm for sparse interpolation of multivariate polynomials
    Cuyt, Annie
    Lee, Wen-shin
    THEORETICAL COMPUTER SCIENCE, 2008, 409 (02) : 180 - 185
  • [4] Fast interpolation of multivariate polynomials with sparse exponents
    van der Hoeven, Joris
    Lecerf, Gregoire
    JOURNAL OF COMPLEXITY, 2025, 87
  • [5] Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials
    Evelyne Hubert
    Michael F. Singer
    Foundations of Computational Mathematics, 2022, 22 : 1801 - 1862
  • [6] Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials
    Hubert, Evelyne
    Singer, Michael F.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (06) : 1801 - 1862
  • [7] Early termination in sparse interpolation algorithms
    Kaltofen, E
    Lee, ES
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 36 (3-4) : 365 - 400
  • [8] Sparse multivariate polynomial interpolation on the basis of Schubert polynomials
    Mukhopadhyay, Priyanka
    Qiao, Youming
    COMPUTATIONAL COMPLEXITY, 2017, 26 (04) : 881 - 909
  • [9] Sparse multivariate polynomial interpolation on the basis of Schubert polynomials
    Priyanka Mukhopadhyay
    Youming Qiao
    computational complexity, 2017, 26 : 881 - 909
  • [10] Symbolic-numeric sparse interpolation of multivariate polynomials
    Giesbrecht, Mark
    Labahn, George
    Lee, Wen-shin
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (08) : 943 - 959