Smart Media-based Context-aware Recommender Systems for Learning: A Conceptual Framework

被引:0
|
作者
Hassan, Mohammed [1 ]
Hamada, Mohamed [1 ]
机构
[1] Univ Aizu, Grad Sch Comp Sci & Engn, Aizu Wakamatsu, Fukushima, Japan
来源
2017 16TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY BASED HIGHER EDUCATION AND TRAINING (ITHET) | 2017年
关键词
Recommender systems; learning style index; smart media; learning object; contextualization; content-based filtering;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modern technologies have been greatly employed to support teachers and learners for facilitating teaching and learning processes. Recommender systems (RSs) for technology-enhanced learning (TEL) are among those new technologies that have been researched extensively within the past few years. This is because RSs for TEL are intelligent decision support systems that assist internet users in finding suitable learning objects that might match their preferences on the kinds of materials they could require to enhanced their learning activities. However, most of the existing RSs for learning used traditional techniques (2-dimensional user x item techniques) to recommend learning objects to users without considering the contexts in which the recommendation should be made. Those contexts could be the geographical locations, the level of education, the time of the day or week, their learning preferences, and so on. This paper proposed a conceptual framework of smart media-based context-aware RSs for learning that could consider the learning preferences of users as a context for making accurate and usable recommendations. The proposed system was designed to run on smart devices for learners to test and know their learning styles and receive learning object recommendations according to their learning preferences. The paper contains the conceptualization of the framework and the details of the design and implementation procedure.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Context-aware media recommendations for smart devices
    Otebolaku, Abayomi Moradeyo
    Andrade, Maria Teresa
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2015, 6 (01) : 13 - 36
  • [42] Explanation for User Trust in Context-Aware Recommender Systems for Search-As-Learning
    Rani, Neha
    Qian, Yadi
    Chu, Sharon Lynn
    2023 IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES, ICALT, 2023, : 47 - 49
  • [43] A Context-Aware Authentication Framework for Smart Homes
    Ashibani, Yosef
    Kauling, Dylan
    Mahmoud, Qusay H.
    2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [44] Collective Embedding for Neural Context-Aware Recommender Systems
    da Costa, Felipe Soares
    Dolog, Peter
    RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2019, : 201 - 209
  • [45] Workshop on Context-Aware Recommender Systems (CARS) 2024
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 1219 - 1221
  • [46] CARS: Workshop on Context-Aware Recommender Systems 2023
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 1234 - 1236
  • [47] Domain of Application in Context-Aware Recommender Systems: A Review
    Haruna, Khalid
    Ismail, Maizatul Akmar
    Shuhidan, Shuhaida Mohamed
    PROCEEDINGS OF KNOWLEDGE MANAGEMENT INTERNATIONAL CONFERENCE (KMICE) 2016, 2016, : 223 - 228
  • [48] Preface to the special issue on context-aware recommender systems
    Adomavicius, Gediminas
    Jannach, Dietmar
    USER MODELING AND USER-ADAPTED INTERACTION, 2014, 24 (1-2) : 1 - 5
  • [49] A systematic review of scholar context-aware recommender systems
    Champiri, Zohreh Dehghani
    Shahamiri, Seyed Reza
    Salim, Siti Salwah Binti
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (03) : 1743 - 1758
  • [50] Generating Synthetic Data for Context-Aware Recommender Systems
    Pasinato, Marden
    Mello, Carlos Eduardo
    Aufaure, Marie-Aude
    Zimbrao, Geraldo
    2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 563 - 567