Synthesis of (S)-BINOL-Terminated Poly(ethylene glycol) Polyrotaxane Including α-Cyclodextrin

被引:0
|
作者
Onimura, Kenjiro [1 ]
Kawashima, Masayuki [1 ]
Yamabuki, Kazuhiro [1 ]
Isobe, Yukio [1 ]
Oishi, Tsutomu [1 ]
机构
[1] Yamaguchi Univ, Grad Sch Sci & Engn, Dept Appl Chem, Ube, Yamaguchi 7558611, Japan
关键词
Polyrotaxane; Cyclodextrin; Supramolecule; Binaphthol; Optically Active Polymer;
D O I
10.1295/koron.65.196
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
a,omega-Dimesyl-terminated poly(ethylene glycol) (PEG-Ms2) and alpha,omega-ditosyl-terminated PEG (PEG-Ts2) were prepared from PEG (PEG(1000); M-n = 1000 and PEG(4000); M-n = 4000) and methanesulfonyl chloride or p-toluenesulfonyl chloride. alpha,omega-Ditosyl-terminated PEG4000 pseudorotaxane (PEG(4000)-TS2-pseudorotaxa-alpha-cyclodextrin (alpha-CD) was prepared from PEG(4000)-TS2 and alpha-CD in H2O. (S)-(-)-1,1'-Bi (2-naphthol) ((S)-BINOL) was added to the pseudorotaxanes in the presence of sodium hydride to give PEG-rotaxa-alpha-CDs end-capping (S)-BINOL (PEG-BINOL2-rotava-alpha-CD). The purified PEG(4000)-BINOL2-rotaxa-alpha-CD was isolated in 38% yield. For a PEG4000-TS2, the average number of alpha-CD's per chain is 29, which corresponds to 64% coverage. After end-capping reaction, the average number of alpha-CD's per chain is 14, which corresponds to 31% coverage. The threading level in the polyrotaxane is limited by the coverage of the poly-pseudorotaxane and by the competition between the end blocking reaction and dethreading. In DMF a rapid dethreading occurs.
引用
收藏
页码:196 / 198
页数:3
相关论文
共 50 条
  • [41] Thermally-responsive properties of a polyrotaxane consisting of β-cyclodextrins and a poly(ethylene glycol)-poly(propylene glycol) triblock-copolymer
    School of Materials Science, Japan Adv. Inst. Sci. and Technol., 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
    Polym J, 11 pt 2 (1099-1104):
  • [42] Thermally-responsive properties of a polyrotaxane consisting of β-cyclodextrins and a poly(ethylene glycol)-poly(propylene glycol) triblock-copolymer
    Fujita, H
    Ooya, T
    Yui, N
    POLYMER JOURNAL, 1999, 31 (11) : 1099 - 1104
  • [43] Facile hydrophilic surface modification of poly(tetrafluoroethylene) using fluoroalkyl-terminated poly(ethylene glycol)s
    Tae, G
    Lammertink, RGH
    Kornfield, JA
    Hubbell, JA
    ADVANCED MATERIALS, 2003, 15 (01) : 66 - +
  • [44] Morphological and Electronic Properties of Poly(ethylene glycol)/RAMEB Polyrotaxane and Polypyrrole Supramolecular Networks
    Resmerita, Ana-Maria
    Asandulesa, Mihai
    Farcas, Aurica
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2020, 221 (08)
  • [45] Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering
    Lee, WK
    Ichi, T
    Ooya, T
    Yamamoto, T
    Katoh, M
    Yui, N
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 67A (04) : 1087 - 1092
  • [46] Synthesis of poly(ethylene glycol) derivatives
    Chen, Hai-Yun
    Shan, Yu-Kai
    Qin, Yu-Yue
    Zhou, Guo-Xian
    Yuan, Ming-Long
    ADVANCED ENGINEERING MATERIALS III, PTS 1-3, 2013, 750-752 : 1674 - +
  • [47] Preparation of β-cyclodextrin polyrotaxane:: Photodimerization of pseudo-polyrotaxane with 2-anthryl and triphenylmethyl groups at the ends of poly(propylene glycol)
    Okada, M
    Harada, A
    ORGANIC LETTERS, 2004, 6 (03) : 361 - 364
  • [48] Solubility and spectrophotometric investigation of α-cyclodextrin and poly(ethylene glycol) complexation
    Horsky, J
    EUROPEAN POLYMER JOURNAL, 1998, 34 (5-6) : 591 - 596
  • [49] Efficient production of polyrotaxanes from α-cyclodextrin and poly(ethylene glycol)
    Araki, J
    Zhao, CM
    Kohzo, I
    MACROMOLECULES, 2005, 38 (17) : 7524 - 7527
  • [50] Preparation of monomethyl ethers of poly(ethylene glycol)s free of the poly(ethylene glycol)
    Lapienis, G
    Penczek, S
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2001, 16 (03) : 206 - 220