Optical material anisotropy in high-index transition metal dichalcogenide Mie nanoresonators

被引:41
|
作者
Green, Thomas D. [1 ]
Baranov, Denis G. [1 ]
Munkhbat, Battulga [1 ]
Verre, Ruggero [1 ]
Shegai, Timur [1 ]
Kall, Mikael [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
来源
OPTICA | 2020年 / 7卷 / 06期
关键词
LIGHT; GENERATION; METASURFACES; SCATTERING; MATTER;
D O I
10.1364/OPTICA.389192
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Resonant optical antennas provide unprecedented opportunities to control light on length scales far below the diffraction limit. Recent studies have demonstrated that nanostructures made of multilayer transition metal dichalcogenides (TMDCs) can exhibit well-defined and intense Mie resonances in the visible to the near-infrared spectral range. These resonances are realizable because the TMDC materials exhibit very high in-plane refractive indices, in fact higher than what is found in typical high-index dielectric materials like Si orGaAs. However, their out-of-plane refractive indices are comparatively low. Here we experimentally and theoretically investigate how this unusually large material anisotropy influences the optical response of individual TMDC nanoresonators made of MoS2. We find that anisotropy strongly affects the far-field optical response of the resonators, as well as complex interference effects, such as anapole and resonant Kerker conditions. Moreover, we show that it is possible to utilize the material anisotropy to probe the vectorial nature of the nanoresonator internal near fields. Specifically, we show that Raman spectra originating from individual MoS2 nanoresonators exhibit mode-specific anisotropic enhancement factors that vary with the nanoresonator size and correlate with specific modes supported at resonance. Our study indicates that exploring material anisotropy in novel high-index dielectrics may lead to new nanophotonic effects and applications. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:680 / 686
页数:7
相关论文
共 50 条
  • [31] LC allows optical trapping of high-index nanowires
    Wallace, John
    LASER FOCUS WORLD, 2012, 48 (07): : 20 - 22
  • [32] Acoustic Analogues of High-Index Optical Waveguide Devices
    Zangeneh-Nejad, Farzad
    Fleury, Romain
    SCIENTIFIC REPORTS, 2018, 8
  • [33] Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der waals plane
    Friemelt, K.
    Lux-Steiner, M.-Ch.
    Bucher, E.
    Journal of Applied Physics, 1993, 74 (08): : 5266 - 5268
  • [34] ROUGHENING TRANSITION OF HIGH-INDEX CRYSTAL FACES - THE CASE OF COPPER
    VILLAIN, J
    GREMPEL, DR
    LAPUJOULADE, J
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1985, 15 (04): : 809 - 834
  • [35] Atomic-Strain Mapping of High-Index Facets in Late-Transition-Metal Nanoparticles for Electrocatalysis
    Wu, Tong
    Sun, Mingzi
    Huang, Bolong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (42) : 22996 - 23001
  • [36] High Harmonic Generation in Monolayer and Bilayer of Transition Metal Dichalcogenide
    Lee, Yeon
    Kim, Dasol
    Kim, Dong-Eon
    Chacon, Alexis
    SYMMETRY-BASEL, 2021, 13 (12):
  • [37] Correction: Optical absorption in lateral transition metal dichalcogenide quantum wells
    A. Aliakbarpour
    M. S. Akhoundi Khezrabad
    S. Shojaei
    S. A. Hashemizadeh-Aghda
    The European Physical Journal B, 2022, 95
  • [38] Valley-optical absorption in planar transition metal dichalcogenide superlattices
    R. Hashemi
    S. Shojaei
    B. Rezaei
    Zheng Liu
    Scientific Reports, 13
  • [39] Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers
    Wu, Fengcheng
    Lovorn, Timothy
    MacDonald, A. H.
    PHYSICAL REVIEW B, 2018, 97 (03)
  • [40] Optical thickness identification of transition metal dichalcogenide nanosheets on transparent substrates
    Zhang, Hao
    Ran, Feirong
    Shi, Xiaotong
    Fang, Xiangru
    Wu, Shiyu
    Liu, Yue
    Zheng, Xianqiang
    Yang, Peng
    Liu, Yang
    Wang, Lin
    Huang, Xiao
    Li, Hai
    Huang, Wei
    NANOTECHNOLOGY, 2017, 28 (16)