Population model-based optimization

被引:0
|
作者
Chen, Xi [1 ]
Zhou, Enlu [2 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Stochastic search; Model-based optimization; Sequential Monte Carlo; GLOBAL OPTIMIZATION; SEARCH;
D O I
10.1007/s10898-015-0288-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Model-based optimization methods are a class of stochastic search methods that iteratively find candidate solutions by generating samples from a parameterized probabilistic model on the solution space. In order to better capture the multi-modality of the objective functions than the traditional model-based methods which use only a single model, we propose a framework of using a population of models at every iteration with an adaptive mechanism to propagate the population over iterations. The adaptive mechanism is derived from estimating the optimal parameter of the probabilistic model in a Bayesian manner, and thus provides a proper way to determine the diversity in the population of the models. We provide theoretical justification on the convergence of this framework by showing that the posterior distribution of the parameter asymptotically converges to a degenerate distribution concentrating on the optimal parameter. Under this framework, we develop two practical algorithms by incorporating sequential Monte Carlo methods, and carry out numerical experiments to illustrate their performance.
引用
下载
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [31] MICO: Model-Based Irrigation Control Optimization
    Winkler, Daniel A.
    Wang, Robert
    Blanchette, Francois
    Carreira-Perpinan, Miguel A.
    Cerpa, Alberto E.
    SenSys'15: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, 2015, : 409 - 410
  • [32] Model-based scanner tuning for process optimization
    Aldana, Rafael
    Vellanki, Venu
    Shao, Wenjin
    Goossens, Ronald
    Yu, Zongchang
    Xie, Xu
    Cao, Yu
    Schreel, Koen
    Lee, Peter
    Kim, Won
    Nooitgedagt, Tjitte
    27TH EUROPEAN MASK AND LITHOGRAPHY CONFERENCE, 2011, 7985
  • [33] Model-Based Design and Optimization of Electric Vehicles
    Skarka, Wojciech
    TRANSDISCIPLINARY ENGINEERING METHODS FOR SOCIAL INNOVATION OF INDUSTRY 4.0, 2018, 7 : 566 - 575
  • [34] Proximal policy optimization with model-based methods
    Li, Shuailong
    Zhang, Wei
    Zhang, Huiwen
    Zhang, Xin
    Leng, Yuquan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5399 - 5410
  • [35] Optimization method of model-based stereo vision
    Hao, Yingming
    Zhu, Feng
    Gaojishu Tongxin/High Technology Letters, 2000, 10 (10): : 67 - 70
  • [36] Model-based optimization and control of chromatographic processes
    Klatt, KU
    Hanisch, F
    Dünnebier, G
    Engell, S
    COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 1119 - 1126
  • [37] Interactive model-based search for global optimization
    Wang, Yuting
    Garcia, Alfredo
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 479 - 495
  • [38] Model-based design analysis and yield optimization
    Pfingsten, Tobias
    Herrmann, Daniel J. L.
    Rasmussen, Carl Edward
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2006, 19 (04) : 475 - 486
  • [39] Model-based optimization of sulfur recovery units
    Manenti, Flavio
    Papasidero, Davide
    Bozzano, Giulia
    Ranzi, Eliseo
    COMPUTERS & CHEMICAL ENGINEERING, 2014, 66 : 244 - 251
  • [40] Model-based multiplicity estimation of population size
    Laska, Eugene M.
    Meisner, Morris
    Wanderling, Joseph
    STATISTICS IN MEDICINE, 2009, 28 (17) : 2230 - 2252