Population model-based optimization

被引:0
|
作者
Chen, Xi [1 ]
Zhou, Enlu [2 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Stochastic search; Model-based optimization; Sequential Monte Carlo; GLOBAL OPTIMIZATION; SEARCH;
D O I
10.1007/s10898-015-0288-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Model-based optimization methods are a class of stochastic search methods that iteratively find candidate solutions by generating samples from a parameterized probabilistic model on the solution space. In order to better capture the multi-modality of the objective functions than the traditional model-based methods which use only a single model, we propose a framework of using a population of models at every iteration with an adaptive mechanism to propagate the population over iterations. The adaptive mechanism is derived from estimating the optimal parameter of the probabilistic model in a Bayesian manner, and thus provides a proper way to determine the diversity in the population of the models. We provide theoretical justification on the convergence of this framework by showing that the posterior distribution of the parameter asymptotically converges to a degenerate distribution concentrating on the optimal parameter. Under this framework, we develop two practical algorithms by incorporating sequential Monte Carlo methods, and carry out numerical experiments to illustrate their performance.
引用
下载
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [1] Population model-based optimization
    Xi Chen
    Enlu Zhou
    Journal of Global Optimization, 2015, 63 : 125 - 148
  • [2] POPULATION MODEL-BASED OPTIMIZATION WITH SEQUENTIAL MONTE CARLO
    Chen, Xi
    Zhou, Enlu
    2013 WINTER SIMULATION CONFERENCE (WSC), 2013, : 1004 - 1015
  • [3] Population Pharmacokinetics and Model-Based Dosing Optimization of Teicoplanin in Pediatric Patients
    Zhang, Tao
    Sun, Dan
    Shu, Zuocheng
    Duan, Ziyun
    Liu, Yang
    Du, Qian
    Zhang, Ying
    Dong, Yuzhu
    Wang, Taotao
    Hu, Sasa
    Cheng, Hua
    Dong, Yalin
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [4] MODEL-BASED EVOLUTIONARY OPTIMIZATION
    Wang, Yongqiang
    Fu, Michael C.
    Marcus, Steven I.
    PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 1199 - 1210
  • [5] Model-Based Optimization for Robotics
    Mombaur, Katja
    Kheddar, Abderrahmane
    Harada, Kensuke
    Buschmann, Thomas
    Atkeson, Chris
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2014, 21 (03) : 24 - 161
  • [6] Model-Based Individualized Treatment of Chemotherapeutics: Bayesian Population Modeling and Dose Optimization
    Jayachandran, Devaraj
    Lainez-Aguirre, Jose
    Rundell, Ann
    Vik, Terry
    Hannemann, Robert
    Reklaitis, Gintaras
    Ramkrishna, Doraiswami
    PLOS ONE, 2015, 10 (07):
  • [7] Model Inversion Networks for Model-Based Optimization
    Kumar, Aviral
    Levine, Sergey
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [8] MODEL-BASED PROCESS AND PRODUCT OPTIMIZATION
    RITAPAL, K
    ERDOL & KOHLE ERDGAS PETROCHEMIE, 1995, 48 (03): : 120 - 121
  • [9] Model-based Optimization with Concept Drifts
    Richter, Jakob
    Shi, Junjie
    Chen, Jian-Jia
    Rahnenfuehrer, Joerg
    Lang, Michel
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 877 - 885
  • [10] On the optimization problem of model-based monitoring
    L. Ginzinger
    M. N. Sahinkaya
    B. Heckmann
    P. Keogh
    H. Ulbrich
    Science China Technological Sciences, 2011, 54 : 1095 - 1106