Uncertainty Quantification in Hybrid Dynamical Systems

被引:0
|
作者
Sahai, Tuhin [1 ]
Pasini, Jose Miguel [1 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
关键词
POLYNOMIAL CHAOS; FLOW SIMULATIONS; EXPANSIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertainty quantification (UQ) techniques are frequently used to ascertain output variability in systems with parametric uncertainty. Traditional algorithms for UQ are either system-agnostic and slow (such as Monte Carlo) or fast with stringent assumptions on smoothness (such as polynomial chaos and Quasi-Monte Carlo). In this work, we develop a fast UQ approach for hybrid dynamical systems by extending the polynomial chaos methodology to these systems. To capture discontinuities, we use a wavelet-based Wiener-Haar expansion. We develop a boundary layer approach to propagate uncertainty through separable reset conditions. The above methods are demonstrated on example problems.
引用
下载
收藏
页码:2183 / 2188
页数:6
相关论文
共 50 条
  • [21] Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases
    Jinchun LAN
    Qianlong ZHANG
    Sha WEI
    Zhike PENG
    Xinjian DONG
    Wenming ZHANG
    Applied Mathematics and Mechanics(English Edition), 2019, 40 (01) : 63 - 84
  • [22] Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases
    Lan, Jinchun
    Zhang, Qianlong
    Wei, Sha
    Peng, Zhike
    Dong, Xinjian
    Zhang, Wenming
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (01) : 63 - 84
  • [23] Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems
    Sapsis, Themistoklis P.
    Majda, Andrew J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (34) : 13705 - 13710
  • [24] Uncertainty quantification of multidimensional dynamical systems based on adaptive numerical solutions of the Liouville equation
    Razi, M.
    Attar, P. J.
    Vedula, P.
    PROBABILISTIC ENGINEERING MECHANICS, 2015, 42 : 7 - 20
  • [25] Uncertainty quantification for stochastic dynamical systems using time-dependent stochastic bases
    Jinchun Lan
    Qianlong Zhang
    Sha Wei
    Zhike Peng
    Xinjian Dong
    Wenming Zhang
    Applied Mathematics and Mechanics, 2019, 40 : 63 - 84
  • [26] A statistically accurate modified quasilinear Gaussian closure for uncertainty quantification in turbulent dynamical systems
    Sapsis, Themistoklis P.
    Majda, Andrew J.
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 252 : 34 - 45
  • [27] Uncertainty propagation in dynamical systems
    Mezic, Igor
    Runolfsson, Thordur
    AUTOMATICA, 2008, 44 (12) : 3003 - 3013
  • [28] An efficient hybrid method for uncertainty quantification
    Wahlsten, Markus
    Alund, Oskar
    Nordstrom, Jan
    BIT NUMERICAL MATHEMATICS, 2022, 62 (02) : 607 - 629
  • [29] An efficient hybrid method for uncertainty quantification
    Markus Wahlsten
    Oskar Ålund
    Jan Nordström
    BIT Numerical Mathematics, 2022, 62 : 607 - 629
  • [30] Hybrid Dynamical Systems
    Goebel, Rafal
    Sanfelice, Ricardo G.
    Teel, Andrew R.
    IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (02): : 28 - 93