Double image encryption based on phase-amplitude hybrid encoding and iterative phase encoding in fractional Fourier transform domains

被引:5
|
作者
Wang, Qu [1 ]
Guo, Qing [2 ]
Lei, Liang [1 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100094, Peoples R China
来源
OPTIK | 2013年 / 124卷 / 22期
基金
中国国家自然科学基金;
关键词
Optical image encryption; Amplitude-phase hybrid encoding; Fractional Fourier transform; PIXEL SCRAMBLING TECHNIQUE; OPTICAL ENCRYPTION; FRESNEL DOMAIN; GYRATOR TRANSFORM; PLAINTEXT ATTACK; ARNOLD TRANSFORM; KEYS; SYSTEM;
D O I
10.1016/j.ijleo.2013.03.137
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new method for double image encryption is proposed that is based on amplitude-phase hybrid encoding and iterative random phase encoding in fractional Fourier transform (FrFT) domains. In the iterative random phase encoding operation, a binary random matrix is defined to encode two original images to a single complex-valued image, which is then converted into a stationary white noise image by the iterative phase encoding with FrFTs. Compared with the previous schemes that uses fully phase encoding, the proposed method reduces the difference between two original images in key space and sensitivity to the FrFT orders. The primitive images can be retrieved exactly by applying correct keys with initial conditions of chaotic system, the pixel scrambling operation and the FrFT orders. Computer simulations demonstrate that the encryption method has impressively high security level and certain robustness against data loss and noise interference. (C) 2013 Elsevier GmbH. All rights reserved.
引用
下载
收藏
页码:5496 / 5502
页数:7
相关论文
共 50 条
  • [21] Double image encryption using phase-shifting interferometry and random mixed encoding method in fractional Fourier transform domain
    Wang, Qu
    Guo, Qing
    Lei, Liang
    Zhou, Jinyun
    OPTICAL ENGINEERING, 2013, 52 (08)
  • [22] Optical encryption by double-random phase encoding in the fractional Fourier domain
    Unnikrishnan, G
    Joseph, J
    Singh, K
    OPTICS LETTERS, 2000, 25 (12) : 887 - 889
  • [23] Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains
    Liu, Zhengjun
    Zhang, Yu
    Li, She
    Liu, Wei
    Liu, Wanyu
    Wang, Yanhua
    Liu, Shutian
    OPTICS AND LASER TECHNOLOGY, 2013, 47 : 152 - 158
  • [24] Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding
    Wang, Xiaogang
    Chen, Wen
    Chen, Xudong
    OPTICS EXPRESS, 2014, 22 (19): : 22981 - 22995
  • [25] A known-plaintext attack on iterative random phase encoding in fractional Fourier domains
    Yin, Fucheng
    He, Qi
    Liu, Zhengjun
    OPTICA APPLICATA, 2017, 47 (01) : 131 - 139
  • [26] Quantum image encryption based on generalized Arnold transform and double random-phase encoding
    Zhou, Nan Run
    Hua, Tian Xiang
    Gong, Li Hua
    Pei, Dong Ju
    Liao, Qing Hong
    QUANTUM INFORMATION PROCESSING, 2015, 14 (04) : 1193 - 1213
  • [27] Quantum image encryption based on generalized Arnold transform and double random-phase encoding
    Nan Run Zhou
    Tian Xiang Hua
    Li Hua Gong
    Dong Ju Pei
    Qing Hong Liao
    Quantum Information Processing, 2015, 14 : 1193 - 1213
  • [28] Security-enhanced multiple-image encryption based on quick response codes and modified double random phase encoding in the fractional Fourier transform domain
    Wang, Zhihan
    Su, Yanfeng
    Wang, Xunyuan
    Wang, Boyu
    Li, Shun
    Liu, Chen
    Li, Jinsong
    Cai, Zhijian
    Wan, Wenqiang
    APPLIED OPTICS, 2022, 61 (24) : 7255 - 7264
  • [29] Iterative partial phase encoding based on joint fractional Fourier transform correlator adopting phase-shifting digital holography
    Wang, Qu
    Guo, Qing
    Lei, Liang
    Zhou, Jinyun
    OPTICS COMMUNICATIONS, 2014, 313 : 1 - 8
  • [30] Joint encryption and authentication in hybrid domains with hidden double random-phase encoding
    Hua Ren
    Shaozhang Niu
    Multimedia Tools and Applications, 2022, 81 : 25993 - 26014