Participant identification in haptic systems using Hidden Markov Models

被引:0
|
作者
Asfaw, Y [1 ]
Orozco, M [1 ]
Shirmohammadi, S [1 ]
El Saddik, A [1 ]
Adler, A [1 ]
机构
[1] Univ Ottawa, Sch Informat Technol & Engn, Ottawa, ON, Canada
关键词
biometrics; haptic systems; measurement of haptic interaction; Hidden Markov Models;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biometric systems allow identification of individuals based on behavioral or physiological characteristics. In this paper we explore biometric applications in access control of haptic systems. These systems produce information on human computer interaction behavior of a specific participant and could potentially be unique. This paper proposes a novel design based on Hidden Markov Models (HMM). Architecture is developed where each participant has an HMM model. Results are promising in that they show three out of four users identified correctly from their respective models based on the Match Score (MS) values.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 50 条
  • [31] Text-Independent Online Writer Identification Using Hidden Markov Models
    Wu, Yabei
    Lu, Huanzhang
    Zhang, Zhiyong
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (02): : 332 - 339
  • [32] UXO target area identification with hidden Markov models
    McKenna, Sean A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (02) : 193 - 202
  • [33] Hidden Markov models applied to snakes behavior identification
    Gonqalves, Wesley Nunes
    Silva, Jonathan de Andrade
    Machado, Bruno Brandoli
    Pistori, Hernerson
    de Souza, Albert Schiaveto
    ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2007, 4872 : 777 - 787
  • [34] Evaluation of Spectral Learning for the Identification of Hidden Markov Models
    Mattila, Robert
    Rojas, Cristian R.
    Wahlberg, Bo
    IFAC PAPERSONLINE, 2015, 48 (28): : 897 - 902
  • [35] UXO target area identification with hidden Markov models
    Sean A. McKenna
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 193 - 202
  • [36] Online identification of Hidden Semi-Markov Models
    Azimi, M
    Nasiopoulos, P
    Ward, RK
    ISPA 2003: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, PTS 1 AND 2, 2003, : 991 - 996
  • [37] SIGNAL DENOISING WITH HIDDEN MARKOV MODELS USING HIDDEN MARKOV TREES AS OBSERVATION DENSITIES
    Milone, Diego H.
    Di Persia, Leandro E.
    Tomassi, Diego R.
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 374 - 379
  • [38] Next State Prediction Algorithm for the Avionic systems using the Hidden Markov Models
    Lokesh, M. R.
    Kumaraswamy, Y. S.
    2015 International Conference on Green Computing and Internet of Things (ICGCIoT), 2015, : 1618 - 1623
  • [39] Videotext OCR using hidden Markov models
    Natarajan, P
    Elmieh, B
    Schwartz, R
    Makhoul, J
    SIXTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, PROCEEDINGS, 2001, : 947 - 951
  • [40] Classic cryptanalysis using hidden Markov models
    Vobbilisetty, Rohit
    Di Troia, Fabio
    Low, Richard M.
    Visaggio, Corrado Aaron
    Stamp, Mark
    CRYPTOLOGIA, 2017, 41 (01) : 1 - 28