HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION

被引:23
|
作者
Williams, Matthew O. [1 ]
Schmid, Peter J. [2 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Ecole Polytech, Lab Hydrodynam, F-91128 Palaiseau, France
来源
MULTISCALE MODELING & SIMULATION | 2013年 / 11卷 / 02期
基金
美国国家科学基金会;
关键词
reduced-order models; data analysis; nonlinear coherent structures; numerical integration; proper orthogonal decomposition; dynamic mode decomposition; WAVE-GUIDE ARRAYS; PERIODIC-SOLUTIONS; LOCKED LASERS; ALGORITHMS; TRANSITION; LOCKING; FLOWS;
D O I
10.1137/120874539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A data-driven hybrid numerical integrator is introduced to exploit, numerically, the formation of nonlinear coherent structures that often appear in nonlinear PDEs. Full simulations of the PDE allow model reduction algorithms such as the proper orthogonal decomposition and dynamic mode decomposition to generate reduced order models in an "online" manner. Criteria based on the comparison of these two independent reduction techniques, similar to model predictive control, determine whether the reduced model is accurate without direct evaluation of the underlying PDE. The method is implemented and explored for two prototypical PDE example models and significantly reduces the computational cost of solving those equations even when bifurcations occur.
引用
收藏
页码:522 / 544
页数:23
相关论文
共 50 条
  • [1] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION (vol 11, pg 522, 2013)
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04): : 1311 - 1311
  • [2] Reduced-order methods for neutron transport kinetics problem based on proper orthogonal decomposition and dynamic mode decomposition
    Chi, Honghang
    Ma, Yu
    Wang, Yahui
    ANNALS OF NUCLEAR ENERGY, 2024, 206
  • [3] Constrained reduced-order models based on proper orthogonal decomposition
    Reddy, Sohail R.
    Freno, Brian A.
    Cizmas, Paul G. A.
    Gokaltun, Seckin
    McDaniel, Dwayne
    Dulikravich, George S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 18 - 34
  • [4] Proper orthogonal decomposition reduced-order model of the global oceans
    Kitsios, Vassili
    Cordier, Laurent
    O'Kane, Terence J.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2024, 38 (05) : 707 - 727
  • [5] A REDUCED-ORDER MODEL FOR TURBOMACHINERY FLOWS USING PROPER ORTHOGONAL DECOMPOSITION
    Brenner, Thomas A.
    Carpenter, Forrest L.
    Freno, Brian A.
    Cizmas, Paul G. A.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 6B, 2013,
  • [6] Spectral Proper Orthogonal Decomposition Reduced-Order Model for Analysis of Aerothermoelasticity
    Ji, Chunxiu
    Xie, Dan
    Zhang, Shihao
    Maqsood, Adnan
    AIAA JOURNAL, 2023, 61 (02) : 793 - 807
  • [7] Proper Orthogonal Decomposition Reduced-Order Model for Nonlinear Aeroelastic Oscillations
    Xie, Dan
    Xu, Min
    Dowell, Earl H.
    AIAA JOURNAL, 2014, 52 (02) : 229 - 241
  • [8] Reduced-Order Modeling of Vehicle Aerodynamics via Proper Orthogonal Decomposition
    Mrosek, Markus
    Othmer, Carsten
    Radespiel, Rolf
    SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-MECHANICAL SYSTEMS, 2019, 12 (03): : 225 - 236
  • [9] A New Closure Strategy for Proper Orthogonal Decomposition Reduced-Order Models
    Akhtar, Imran
    Wang, Zhu
    Borggaard, Jeff
    Iliescu, Traian
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2012, 7 (03):
  • [10] Acceleration techniques for reduced-order models based on proper orthogonal decomposition
    Cizmas, Paul G. A.
    Richardson, Brian R.
    Brenner, Thomas A.
    O'Brien, Thomas J.
    Breault, Ronald W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) : 7791 - 7812