Proper orthogonal decomposition reduced-order model of the global oceans

被引:0
|
作者
Kitsios, Vassili [1 ,2 ]
Cordier, Laurent [3 ]
O'Kane, Terence J. [4 ]
机构
[1] CSIRO, Environment, 107-121 Stn St, Aspendale, Vic 3195, Australia
[2] Monash Univ, Dept Mech & Aerosp Engn, Lab Turbulence Res Aerosp & Combust, Clayton, Vic 3800, Australia
[3] Univ Poitiers, ENSMA Inst Pprime, Dept Fluides Therm & Combust, ENSMA,CNRS, F-86360 Futuroscope, France
[4] CSIRO, Environment, Castray Esplanade, Battery Point, Tas 7004, Australia
关键词
Reduced-order modelling; Ocean; Climate; DYNAMICAL-SYSTEMS; PART I; REDUCTION;
D O I
10.1007/s00162-024-00719-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A reduced-order model (ROM) of the global oceans is developed by projecting the hydrostatic Boussinesq equations of motion onto a proper orthogonal decomposition (POD) basis. Three-dimensional POD modes are calculated from the ocean fields of an ensemble climate reanalysis dataset. The coefficients in the POD ROM are calculated using a regression approach. The performance of various POD ROM configurations are assessed. Each configuration is derived from an alternate sea-water equation of state, linking the density and temperature fields. POD ROM variants incorporating an equation of state in which density is a quadratic function of temperature, are able to reproduce the statistics of the large-scale structures at a fraction of the computational cost required to numerically simulate this flow. Due to the speed and efficiency of calculation, such reduced-order models of the global geophysical system will enable researchers and policy makers to assess the physical risk for a broader range of potential future climate scenarios.
引用
收藏
页码:707 / 727
页数:21
相关论文
共 50 条
  • [1] Spectral Proper Orthogonal Decomposition Reduced-Order Model for Analysis of Aerothermoelasticity
    Ji, Chunxiu
    Xie, Dan
    Zhang, Shihao
    Maqsood, Adnan
    [J]. AIAA JOURNAL, 2023, 61 (02) : 793 - 807
  • [2] Proper Orthogonal Decomposition Reduced-Order Model for Nonlinear Aeroelastic Oscillations
    Xie, Dan
    Xu, Min
    Dowell, Earl H.
    [J]. AIAA JOURNAL, 2014, 52 (02) : 229 - 241
  • [3] A REDUCED-ORDER MODEL FOR TURBOMACHINERY FLOWS USING PROPER ORTHOGONAL DECOMPOSITION
    Brenner, Thomas A.
    Carpenter, Forrest L.
    Freno, Brian A.
    Cizmas, Paul G. A.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 6B, 2013,
  • [4] Reduced-order model development using proper orthogonal decomposition and Volterra theory
    Lucia, DJ
    Beran, PS
    [J]. AIAA JOURNAL, 2004, 42 (06) : 1181 - 1190
  • [5] An efficient proper orthogonal decomposition based reduced-order model for compressible flows
    Krath, Elizabeth H.
    Carpenter, Forrest L.
    Cizmas, Paul G. A.
    Johnston, David A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426 (426)
  • [6] Reduced-order model for underwater target identification using proper orthogonal decomposition
    Ramesh, Sai Sudha
    Lim, Kian Meng
    [J]. JOURNAL OF SOUND AND VIBRATION, 2017, 391 : 50 - 72
  • [7] A reduced-order model for a bubbling fluidized bed based on proper orthogonal decomposition
    Yuan, T
    Cizmas, PG
    O'Brien, T
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2005, 30 (02) : 243 - 259
  • [8] A REDUCED-ORDER MODEL FOR ANNULAR LABYRINTH SEALS BASED ON PROPER ORTHOGONAL DECOMPOSITION
    Jin, Hanxiang
    Untaroiu, Alexandrina
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 7, 2017,
  • [9] Constrained reduced-order models based on proper orthogonal decomposition
    Reddy, Sohail R.
    Freno, Brian A.
    Cizmas, Paul G. A.
    Gokaltun, Seckin
    McDaniel, Dwayne
    Dulikravich, George S.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 18 - 34
  • [10] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    [J]. MULTISCALE MODELING & SIMULATION, 2013, 11 (02): : 522 - 544