Spectral measure of large random Hankel, Markov and Toeplitz matrices

被引:151
|
作者
Bryc, W
Dembo, A
Jiang, TF
机构
[1] Univ Cincinnati, Dept Math, Cincinnati, OH 45221 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] Univ Minnesota, Minneapolis, MN 55455 USA
来源
ANNALS OF PROBABILITY | 2006年 / 34卷 / 01期
关键词
random matrix theory; spectral measure; free convolution; Eulerian numbers;
D O I
10.1214/009117905000000495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the limiting spectral measure of large symmetric random matrices of linear algebraic structure. For Hankel and Toeplitz matrices generated by i.i.d. random variables {X-k} of unit variance, and for symmetric Markov matrices generated by i.i.d. random variables {X-ij} (j > i) of zero mean and unit variance, scaling the eigen-values by root n we prove the almost sure, weak convergence of the spectral measures to universal, nonrandom, symmetric distributions gamma(H), gamma(M) and gamma(T) of unbounded support. The moments of gamma(H) and gamma(T) are the sum of volumes of solids related to Eulerian numbers, whereas gamma(M) has a bounded smooth density given by the free convolution of the semicircle and normal densities. For symmetric Markov matrices generated by i.i.d. random variables {X-ij}(j > i) of mean m and finite variance, scaling the eigenvalues by n we prove the almost sure, weak convergence of the spectral measures to the atomic measure at -m. If m = 0, and the fourth moment is finite, we prove that the spectral norm of M-n scaled by root 2n log n converges almost surely to 1.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [31] Limiting spectral distribution of a class of Hankel type random matrices
    Basak, Anirban
    Bose, Arup
    Mukherjee, Soumendu Sundar
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2015, 4 (03)
  • [32] POWERS OF LARGE RANDOM UNITARY MATRICES AND TOEPLITZ DETERMINANTS
    Duits, Maurice
    Johansson, Kurt
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (03) : 1169 - 1187
  • [33] Analysis of the limiting spectral measure of large random matrices of the separable covariance type
    Couillet, Romain
    Hachem, Walid
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2014, 3 (04)
  • [34] CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES
    Guionnet, A.
    Zeitouni, O.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 119 - 136
  • [35] On the Norms of Toeplitz and Hankel Matrices with Pell Numbers
    Karpuz, Eylem G.
    Ates, Firat
    Gungor, A. Dilek
    Cangul, I. Naci
    Cevik, A. Sinan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1117 - +
  • [36] Some remarks on Toeplitz multipliers and Hankel matrices
    Pelczynski, Aleksander
    Sukochev, Fyodor
    STUDIA MATHEMATICA, 2006, 175 (02) : 175 - 204
  • [37] Bounded and compact Toeplitz plus Hankel matrices
    Ehrhardt, Torsten
    Hagger, Raffael
    Virtanen, Jani A.
    STUDIA MATHEMATICA, 2021, 260 (01) : 103 - 120
  • [38] TENSOR BASE OF HANKEL (OR TOEPLITZ) MATRICES - APPLICATIONS
    LAFON, JC
    NUMERISCHE MATHEMATIK, 1975, 23 (04) : 349 - 361
  • [39] SOLUTION OF LINEAR EQUATIONS WITH HANKEL AND TOEPLITZ MATRICES
    RISSANEN, J
    NUMERISCHE MATHEMATIK, 1974, 22 (05) : 361 - 366
  • [40] ON THE INVERSES OF TOEPLITZ-PLUS-HANKEL MATRICES
    HEINIG, G
    ROST, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 106 : 39 - 52