Improved Poincare inequalities with weights

被引:32
|
作者
Drelichman, Irene [1 ]
Duran, Ricardo G. [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
weighted Sobolev inequality; weighted Poincare inequality; reverse doubling weights; John domains;
D O I
10.1016/j.jmaa.2008.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that if Omega is an element of R-n is a bounded John domain, the following weighted Poincare-type inequality holds: [GRAPHICS] where f is a locally Lipschitz function on Omega, d(x) denotes the distance of x to the boundary of Omega, the weights W-1, W-2 satisfy certain cube conditions, and alpha is an element of [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:286 / 293
页数:8
相关论文
共 50 条
  • [31] The Poincare inequality and reverse doubling weights
    Hurri-Syrjänen, R
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (02): : 206 - 214
  • [32] Lipschitz spaces and Poincare inequalities
    Coulhon, T
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 136 (01) : 81 - 113
  • [33] Poincare inequalities and Steiner symmetrization
    Koskela, P
    Stanoyevitch, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1996, 40 (03) : 365 - 389
  • [34] REMARKS ON INEQUALITIES OF POINCARE TYPE
    BROWN, R
    EDMUNDS, D
    RAKOSNIK, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1995, 45 (02) : 351 - 377
  • [35] Poincare-Hopf inequalities
    Bertolim, MA
    Mello, MP
    De Rezende, KA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) : 4091 - 4129
  • [36] Matrix Poincare inequalities and concentration
    Aoun, Richard
    Banna, Marwa
    Youssef, Pierre
    ADVANCES IN MATHEMATICS, 2020, 371
  • [37] Poincare inequalities in reflexive cones
    Jebelean, Petru
    Precup, Radu
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 359 - 363
  • [38] ON SOME WEIGHTED POINCARE INEQUALITIES
    RIONERO, S
    SALEMI, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4 (01): : 253 - 260
  • [39] Some Weighted Poincare Inequalities
    Ferrari, Fausto
    Valdinoci, Enrico
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1619 - 1637
  • [40] Orlicz-Poincare inequalities
    Wang, Feng-Yu
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2008, 51 : 529 - 543