Corrected energy of distributions for 3-Sasakian and normal complex contact manifolds

被引:0
|
作者
Blair, DE [1 ]
Vanli, AT
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Gazi Univ, Dept Math, Fac Sci & Art, TR-06500 Ankara, Turkey
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that the natural fibrations on 3-Sasakian manifolds and on normal complex contact metric manifolds are minima of the corrected energy of the corresponding distributions.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 50 条
  • [31] 3-Sasakian manifolds in dimension seven, their spinors and G2-structures
    Agricola, Ilka
    Friedrich, Thomas
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (02) : 326 - 332
  • [32] Noncompact Riemannian spaces with the holonomy group spin(7) and 3-Sasakian manifolds
    Ya. V. Bazaikin
    [J]. Proceedings of the Steklov Institute of Mathematics, 2008, 263 : 2 - 12
  • [33] Compact 3-Sasakian 7-manifolds with arbitrary second Betti number
    Boyer, CP
    Galicki, K
    Mann, BM
    Rees, EG
    [J]. INVENTIONES MATHEMATICAE, 1998, 131 (02) : 321 - 344
  • [34] 7D supersymmetric Yang-Mills on hypertoric 3-Sasakian manifolds
    Iakovidis, Nikolaos
    Qiu, Jian
    Rocen, Andreas
    Zabzine, Maxim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
  • [35] SUB-RIEMANNIAN RICCI CURVATURES AND UNIVERSAL DIAMETER BOUNDS FOR 3-SASAKIAN MANIFOLDS
    Rizzi, Luca
    Silveira, Pavel
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2019, 18 (04) : 783 - 827
  • [36] Affine connections on 3-Sasakian homogeneous manifolds (vol 294, pg 817, 2020)
    Draper, Cristina
    Ortega, Miguel
    Palomo, Francisco J.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (1-2) : 869 - 869
  • [37] Geometric flows of G2-structures on 3-Sasakian 7-manifolds
    Kennon, Aaron
    Lotay, Jason D.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2023, 187
  • [38] 7D supersymmetric Yang-Mills on hypertoric 3-Sasakian manifolds
    Nikolaos Iakovidis
    Jian Qiu
    Andreas Rocén
    Maxim Zabzine
    [J]. Journal of High Energy Physics, 2020
  • [39] Submanifolds in Normal Complex Contact Manifolds
    Mihai, Adela
    Mihai, Ion
    [J]. MATHEMATICS, 2019, 7 (12)
  • [40] The contact magnetic flow in 3D Sasakian manifolds
    Cabrerizo, J. L.
    Fernandez, M.
    Gomez, J. S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (19)