Shadowing for actions of some finitely generated groups

被引:30
|
作者
Osipov, Alexey V. [1 ,2 ]
Tikhomirov, Sergey B. [1 ,3 ,4 ]
机构
[1] St Petersburg State Univ, Dept Math & Mech, Chebyshev Lab, St Petersburg 199178, Russia
[2] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio de Giorgi, I-56100 Pisa, Italy
[3] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[4] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源
基金
俄罗斯基础研究基金会;
关键词
shadowing; expansivity; group action; nilpotent group; solvable group; free group; ORBIT-TRACING-PROPERTY; EXPANSIVE HOMEOMORPHISMS; MULTIDIMENSIONAL TIME;
D O I
10.1080/14689367.2014.902037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a notion of shadowing property for actions of finitely generated groups and study its basic properties. We formulate and prove a shadowing lemma for actions of nilpotent groups. We construct an example of a faithful linear action of a solvable Baumslag-Solitar group and show that the shadowing property depends on quantitative characteristics of hyperbolicity. Finally, we show that any linear action of a non-abelian free group does not have the shadowing property.
引用
收藏
页码:337 / 351
页数:15
相关论文
共 50 条
  • [21] Finitely generated groups are universal among finitely generated structures
    Harrison-Trainor, Matthew
    Turbo Ho, Meng-Che
    ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (01)
  • [22] Chaos for finitely generated semigroup actions
    Wang, Lidong
    Zhao, Yingcui
    Chu, Zhenyan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3843 - 3850
  • [23] A NOTE ON FINITELY GENERATED GROUPS
    GREGORAC, RJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (04) : 756 - +
  • [24] Powers in finitely generated groups
    Hrushovski, E
    Kropholler, PH
    Lubotzky, A
    Shalev, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) : 291 - 304
  • [25] MONOMORPHISMS OF FINITELY GENERATED FREE GROUPS HAVE FINITELY GENERATED EQUALIZERS
    GOLDSTEIN, RZ
    TURNER, EC
    INVENTIONES MATHEMATICAE, 1985, 82 (02) : 283 - 289
  • [26] Finitely generated semiautomatic groups
    Jain, Sanjay
    Khoussainov, Bakhadyr
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2018, 7 (2-3): : 273 - 287
  • [27] Positively finitely generated groups
    Mann, A
    FORUM MATHEMATICUM, 1996, 8 (04) : 429 - 459
  • [28] ON FINITELY GENERATED SOLUBLE GROUPS
    ROBINSON, DS
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1965, 15 : 508 - &
  • [29] ENGULFING AND FINITELY GENERATED GROUPS
    SKORA, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (04) : 734 - 736
  • [30] Finitely Generated Semiautomatic Groups
    Jain, Sanjay
    Khoussainov, Bakhadyr
    Stephan, Frank
    PURSUIT OF THE UNIVERSAL, 2016, 9709 : 282 - 291