Knee cartilage segmentation using active shape models and contrast enhancement from magnetic resonance images

被引:2
|
作者
Gonzalez, German [1 ]
Escalante-Ramirez, Boris [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrad Ingn Elect, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Fac Ingn, Dept Procesamiento Senales, Mexico City, DF, Mexico
关键词
Segmentation; Active Shape Models; Contrast Enhancement; Gaussian and Laplacian Pyramids; Image Fusion; OSTEOARTHRITIS; THICKNESS; MRI;
D O I
10.1117/12.2035529
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we take advantage from contrast characteristics of our magnetic resonance images improving the performance of Active Shape Models (ASM) applied on knee cartilage segmentation. We perform an image fusion-based contrast enhancement method using time series MRI T2. Then, we apply ASM algorithm and we compare results with ASM without contrast enhancement. The results show that the ASM with contrast enhancement performs better and is consistent. We validate these results using Dice coefficient and Hausdorff distance.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Evaluation of different statistical shape models for segmentation of the left ventricular endocardium from magnetic resonance images
    Piazzese, Concetta
    Carminati, M. Chiara
    Colombo, Andrea
    Krause, Rolf
    Potse, Mark
    Weinert, Lynn
    Tamborini, Gloria
    Pepi, Mauro
    Lang, Roberto M.
    Caiani, Enrico G.
    [J]. 2015 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2015, 42 : 105 - 108
  • [22] CONTRAST AGENTS FOR ENHANCEMENT OF MAGNETIC-RESONANCE IMAGES
    HALL, LD
    [J]. BRITISH JOURNAL OF RADIOLOGY, 1987, 60 (716): : 815 - 816
  • [23] Analysis of the feasibility of using active shape models for segmentation of gray scale images
    Zamora, G
    Sari-Sarraf, H
    Mitra, S
    Long, R
    [J]. MEDICAL IMAGING 2002: IMAGE PROCESSING, VOL 1-3, 2002, 4684 : 1370 - 1381
  • [24] Segmentation of medical images using three-dimensional active shape models
    Josephson, K
    Ericsson, A
    Karlsson, J
    [J]. IMAGE ANALYSIS, PROCEEDINGS, 2005, 3540 : 719 - 728
  • [25] Development of a rapid knee cartilage damage quantification method using magnetic resonance images
    Zhang, Ming
    Driban, Jeffrey B.
    Price, Lori Lyn
    Harper, Daniel
    Lo, Grace H.
    Miller, Eric
    Ward, Robert J.
    McAlindon, Timothy E.
    [J]. BMC MUSCULOSKELETAL DISORDERS, 2014, 15
  • [26] Simultaneous super-resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative
    Neubert, Ales
    Bourgeat, Pierrick
    Wood, Jason
    Engstrom, Craig
    Chandra, Shekhar S.
    Crozier, Stuart
    Fripp, Jurgen
    [J]. MEDICAL PHYSICS, 2020, 47 (10) : 4939 - 4948
  • [27] Development of a rapid knee cartilage damage quantification method using magnetic resonance images
    Ming Zhang
    Jeffrey B Driban
    Lori Lyn Price
    Daniel Harper
    Grace H Lo
    Eric Miller
    Robert J Ward
    Timothy E McAlindon
    [J]. BMC Musculoskeletal Disorders, 15
  • [28] Knee cartilage segmentation and thickness computation from ultrasound images
    Amir Faisal
    Siew-Cheok Ng
    Siew-Li Goh
    Khin Wee Lai
    [J]. Medical & Biological Engineering & Computing, 2018, 56 : 657 - 669
  • [29] Interactive Segmentation of Airways from Chest X-ray Images using Active Shape Models
    Tezoo, Teshwaree
    Douglas, Tania S.
    [J]. 2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1498 - 1501
  • [30] Knee cartilage segmentation and thickness computation from ultrasound images
    Faisal, Amir
    Ng, Siew-Cheok
    Goh, Siew-Li
    Lai, Khin Wee
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (04) : 657 - 669