Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems

被引:201
|
作者
Neiman, A
Saparin, PI
Stone, L
机构
[1] SARATOV NG CHERNYSHEVSKII STATE UNIV, DEPT PHYS, SARATOV 410071, RUSSIA
[2] UNIV POTSDAM, INST THEORET PHYS & ASTROPHYS, D-14415 POTSDAM, GERMANY
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 01期
关键词
D O I
10.1103/PhysRevE.56.270
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A general mechanism of coherence resonance that occurs in noisy dynamical systems close to the onset of bifurcation is demonstrated through examples of period-doubling and torus-birth bifurcations, Near the bifurcation of a periodic orbit, noise produces the characteristic peaks of ''noisy precursors'' in the po-vver spectrum. The signal-to-noise ratio evaluated at these peaks is maximal for a certain optimal noise intensity in a manner that resembles a stochastic resonance.
引用
收藏
页码:270 / 273
页数:4
相关论文
共 50 条
  • [41] Forecasting bifurcations of multi-degree-of-freedom nonlinear systems with parametric resonance
    Chen, Shiyang
    Epureanu, Bogdan
    [J]. NONLINEAR DYNAMICS, 2018, 93 (01) : 63 - 78
  • [42] Forecasting bifurcations of multi-degree-of-freedom nonlinear systems with parametric resonance
    Shiyang Chen
    Bogdan Epureanu
    [J]. Nonlinear Dynamics, 2018, 93 : 63 - 78
  • [43] Reconstructing noisy dynamical systems by triangulations
    Allie, S
    Mees, A
    Judd, K
    Watson, D
    [J]. PHYSICAL REVIEW E, 1997, 55 (01): : 87 - 93
  • [44] Use of particle filters in an active control algorithm for noisy nonlinear structural dynamical systems
    Sajeeb, R.
    Manohar, C. S.
    Roy, D.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2007, 306 (1-2) : 111 - 135
  • [45] Analysis of discontinuous bifurcations in nonsmooth dynamical systems
    Ivanov, Alexander P.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4): : 293 - 306
  • [46] Computer proofs for bifurcations of planar dynamical systems
    Guckenheimer, J
    [J]. COMPUTATIONAL DIFFERENTIATION: TECHNIQUES, APPLICATIONS, AND TOOLS, 1996, : 229 - 237
  • [47] Hidden Bifurcations and Attractors in Nonsmooth Dynamical Systems
    Jeffrey, Mike R.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [48] Bifurcations and dynamical evolution of eigenvalues of Hamiltonian systems
    Hsiao, FY
    Scheeres, DJ
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (01) : 66 - 75
  • [49] Global bifurcations and chaos in polynomial dynamical systems
    Gaiko, VA
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 670 - 674
  • [50] Discretizing dynamical systems with generalized Hopf bifurcations
    Joseph Páez Chávez
    [J]. Numerische Mathematik, 2011, 118 : 229 - 246