Classification of Z2-graded modules of intermediate series over a Block-type Lie algebra

被引:3
|
作者
Su, Yucai [1 ]
Yue, Xiaoqing [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
关键词
Modules of the intermediate series; Lie algebra of Block type; Virasoro algebra; RANK VIRASORO ALGEBRAS; HARISH-CHANDRA MODULES; QUASIFINITE REPRESENTATIONS; WEIGHT MODULES;
D O I
10.1142/S0219199715500595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be the Lie algebra of Block type with basis {L-i,L- j vertical bar i, j is an element of Z} and relations [L-i,L- j, L-k,L- l] = (( j + 1) k - (l + 1)i) L-i vertical bar k,L- j vertical bar l. Since L is Z(2)-graded, it is natural to study Z(2)-graded modules over L. In this paper, Z(2)-graded L-modules of the intermediate series are classified.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Classification of Simple Cuspidal Modules Over a Lattice Lie Algebra of Witt Type
    Billig, Y.
    Iohara, K.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (02): : 417 - 440
  • [22] Quasifinite modules of a Lie algebra related to Block type
    Wang, Qing
    Tan, Shaobin
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 211 (03) : 596 - 608
  • [23] Z2-Graded Gelfand-Kirillov dimension of the Grassmann algebra
    Centrone, Lucio
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2014, 24 (03) : 365 - 374
  • [24] Parabosons, parafermions and representations of Z2 x Z2-graded Lie superalgebras
    Stoilova, N. I.
    Van der Jeugt, J.
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [25] Abelian subalgebras in Z2-graded Lie algebras and affine Weyl groups
    Cellini, P
    Frajria, PM
    Papi, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (43) : 2281 - 2304
  • [26] Z2 x Z2-graded Lie symmetries of the Levy-Leblond equations
    Aizawa, N.
    Kuznetsova, Z.
    Tanaka, H.
    Toppan, F.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (12):
  • [27] Generalized Verma modules over the Lie algebra of type G2
    Khomenko, A
    Mazorchuk, V
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (02) : 777 - 783
  • [28] Classification of Finite Irreducible Conformal Modules over N = 2 Lie Conformal Superalgebras of Block Type
    Chunguang Xia
    Algebras and Representation Theory, 2023, 26 : 1731 - 1757
  • [29] Classification of Indecomposable Modules of the Intermediate Series over Deformative Schrodinger-Virasoro Lie Algebras
    Wang, Wei
    Xu, Ying
    You, Taijie
    ALGEBRA COLLOQUIUM, 2014, 21 (02) : 295 - 306
  • [30] Classification of Finite Irreducible Conformal Modules over N=2 Lie Conformal Superalgebras of Block Type
    Xia, Chunguang
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (05) : 1731 - 1757