INFINITELY MANY LATTICE SURFACES WITH SPECIAL PSEUDO-ANOSOV MAPS

被引:14
|
作者
Calta, Kariane [1 ]
Schmidt, Thomas A. [2 ]
机构
[1] Vassar Coll, Poughkeepsie, NY 12604 USA
[2] Oregon State Univ, Corvallis, OR 97331 USA
关键词
Pseudo-Anosov; SAF invariant; flux; translation surface; Veech group; CONGRUENCE SUBGROUPS; CONTINUED FRACTIONS; TEICHMULLER CURVES; HECKE; BILLIARDS; ORBITS;
D O I
10.3934/jmd.2013.7.239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give explicit pseudo-Anosov homeomorphisms with vanishing Sah-Arnoux-Fathi invariant. Any translation surface whose Veech group is commensurable to any of a large class of triangle groups is shown to have an affine pseudo-Anosov homeomorphism of this type. We also apply a reduction to finite triangle groups and thereby show the existence of nonparabolic elements in the periodic field of certain translation surfaces.
引用
收藏
页码:239 / 254
页数:16
相关论文
共 50 条
  • [21] On Smale diffeomorphisms close to pseudo-Anosov maps
    Lewowicz, Jorge
    Ures, Raul
    COMPUTATIONAL & APPLIED MATHEMATICS, 2001, 20 (1-2): : 187 - 194
  • [22] Extensions, quotients and generalized pseudo-Anosov maps
    de Carvalho, A
    GRAPHS AND PATTERNS IN MATHEMATICS AND THEORETICAL PHYSICS, PROCEEDINGS, 2005, 73 : 315 - 338
  • [23] Constructing pseudo-Anosov maps with given dilatations
    Baik, Hyungryul
    Rafiqi, Ahmad
    Wu, Chenxi
    GEOMETRIAE DEDICATA, 2016, 180 (01) : 39 - 48
  • [24] Constructing pseudo-Anosov maps with given dilatations
    Hyungryul Baik
    Ahmad Rafiqi
    Chenxi Wu
    Geometriae Dedicata, 2016, 180 : 39 - 48
  • [25] SMOOTH MODELS OF THURSTON PSEUDO-ANOSOV MAPS
    GERBER, M
    KATOK, A
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1982, 15 (01): : 173 - 204
  • [26] Extending pseudo-Anosov maps into compression bodies
    Biringer, Ian
    Johnson, Jesse
    Minsky, Yair
    JOURNAL OF TOPOLOGY, 2013, 6 (04) : 1019 - 1042
  • [27] RUELLE SPECTRUM OF LINEAR PSEUDO-ANOSOV MAPS
    Faure, Frederic
    Gouezel, Sebastien
    Lanneau, Erwan
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2019, 6 : 811 - 877
  • [28] A Lower Bound for Dilatations of Certain Class of Pseudo-Anosov Maps of Riemann Surfaces
    Zhang, C.
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2009, 16 (03): : 441 - 460
  • [29] DEHN TWISTS COMBINED WITH PSEUDO-ANOSOV MAPS
    Zhang, Chaohui
    KODAI MATHEMATICAL JOURNAL, 2011, 34 (03) : 367 - 382
  • [30] EXPANSIVE HOMEOMORPHISMS OF COMPACT SURFACES ARE PSEUDO-ANOSOV
    HIRAIDE, K
    OSAKA JOURNAL OF MATHEMATICS, 1990, 27 (01) : 117 - 162