Intrusion Detection and Identification Using Tree-Based Machine Learning Algorithms on DCS Network in the Oil Refinery

被引:10
|
作者
Kim, Kyoung Ho [1 ]
Kwak, Byung Il [2 ]
Han, Mee Lan [1 ]
Kim, Huy Kang [1 ]
机构
[1] Korea Univ, Sch Cybersecur, Seoul 02841, South Korea
[2] Hallym Univ, Sch Software, Gangwon Do 24252, South Korea
关键词
Integrated circuits; Security; Servers; Protocols; Sensor systems; Workstations; Process control; Industrial control system; distributed control system; intrusion detection; attack identification;
D O I
10.1109/TPWRS.2022.3150084
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, Critical Infrastructures (CI) such as energy, power, transportation, and communication have come to be increasingly dependent on advanced information and communication technology (ICT). This change has increased the connection between the Industrial Control System (ICS) supporting the CI and the Internet, resulting in an increase in security threats and allowing a malicious attacker to manipulate and control the ICS arbitrarily. On the other hand, ICS operators are reluctant to install security systems for fear of adverse effects on normal operations due to system changes. Therefore, new research is needed to detect anomalies quickly and identify attack types while ensuring the high availability of ICS. This study proposes a host-based method to detect and identify abnormalities in an Oil Refinery's Distributed Control System (DCS) network using DCS vendor-proprietary protocols using a proposed method based on the tree-based machine learning algorithm. The results demonstrate that the proposed method can effectively detect an abnormality with the eXtreme Gradient Boosting (XGB) classifier, with up to 99% accuracy. Taken together, the results of this study contribute to the accurate detection of abnormal events and identification of attack types on the network without disrupting the normal operation of the DCS in the Oil Refinery.
引用
收藏
页码:4673 / 4682
页数:10
相关论文
共 50 条
  • [31] A comparative study of patient and staff safety evaluation using tree-based machine learning algorithms
    Simsekler, Mecit Can Emre
    Rodrigues, Clarence
    Qazi, Abroon
    Ellahham, Samer
    Ozonoff, Al
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 208
  • [32] A Comprehensive Analysis of Accuracies of Machine Learning Algorithms for Network Intrusion Detection
    Das, Anurag
    Ajila, Samuel A.
    Lung, Chung-Horng
    MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 40 - 57
  • [33] Ensemble-Based Online Machine Learning Algorithms for Network Intrusion Detection Systems Using Streaming Data
    Martindale, Nathan
    Ismail, Muhammad
    Talbert, Douglas A.
    INFORMATION, 2020, 11 (06)
  • [34] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 303 - 307
  • [35] Network Intrusion Detection Using Machine Learning Techniques
    Almutairi, Yasmeen
    Alhazmi, Bader
    Munshi, Amr
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2022, 16 (03) : 193 - 206
  • [36] A Survey on Intrusion Detection System Using Machine Learning Algorithms
    Gulghane, Shital
    Shingate, Vishal
    Bondgulwar, Shivani
    Awari, Gaurav
    Sagar, Parth
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 670 - 675
  • [37] Intrusion Detection System using Aggregation of Machine Learning Algorithms
    Arivarasan, K.
    Obaidat, Mohammad S.
    2022 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS, CITS, 2022, : 123 - 130
  • [38] Network Intrusion Detection using Hybrid Machine Learning
    Chuang, Po-Jen
    Li, Si-Han
    2019 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2019, : 289 - 293
  • [39] Network Intrusion Detection using Machine Learning Approaches
    Hossain, Zakir
    Sourov, Md Mahmudur Rahman
    Khan, Musharrat
    Rahman, Parves
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 438 - 442
  • [40] Intrusion Detection System Based on Machine Learning Algorithms: A Review
    Amanoul, Sandy Victor
    Abdulazeez, Adnan Mohsin
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 79 - 84