ON THE MAXIMAL NUMBER OF COPRIME SUBDEGREES IN FINITE PRIMITIVE PERMUTATION GROUPS

被引:1
|
作者
Dolfi, Silvio [1 ]
Guralnick, Robert [2 ]
Praeger, Cheryl E. [3 ]
Spiga, Pablo [4 ]
机构
[1] Univ Florence, Dipartimento Matemat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, MI, Italy
基金
美国国家科学基金会;
关键词
AUTOMORPHISM-GROUPS; LIE TYPE; EXCEPTIONAL GROUPS; SUBGROUPS;
D O I
10.1007/s11856-016-1405-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The subdegrees of a transitive permutation group are the orbit lengths of a point stabilizer. For a finite primitive permutation group which is not cyclic of prime order, the largest subdegree shares a non-trivial common factor with each non-trivial subdegree. On the other hand, it is possible for non-trivial subdegrees of primitive groups to be coprime, a famous example being the rank 5 action of the small Janko group J (1) on 266 points which has subdegrees of lengths 11 and 12. We prove that, for every finite primitive group, the maximal size of a set of pairwise coprime non-trivial subdegrees is at most 2.
引用
收藏
页码:107 / 147
页数:41
相关论文
共 50 条