ON THE MAXIMAL NUMBER OF COPRIME SUBDEGREES IN FINITE PRIMITIVE PERMUTATION GROUPS

被引:1
|
作者
Dolfi, Silvio [1 ]
Guralnick, Robert [2 ]
Praeger, Cheryl E. [3 ]
Spiga, Pablo [4 ]
机构
[1] Univ Florence, Dipartimento Matemat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[3] Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, MI, Italy
基金
美国国家科学基金会;
关键词
AUTOMORPHISM-GROUPS; LIE TYPE; EXCEPTIONAL GROUPS; SUBGROUPS;
D O I
10.1007/s11856-016-1405-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The subdegrees of a transitive permutation group are the orbit lengths of a point stabilizer. For a finite primitive permutation group which is not cyclic of prime order, the largest subdegree shares a non-trivial common factor with each non-trivial subdegree. On the other hand, it is possible for non-trivial subdegrees of primitive groups to be coprime, a famous example being the rank 5 action of the small Janko group J (1) on 266 points which has subdegrees of lengths 11 and 12. We prove that, for every finite primitive group, the maximal size of a set of pairwise coprime non-trivial subdegrees is at most 2.
引用
收藏
页码:107 / 147
页数:41
相关论文
共 50 条
  • [1] On the maximal number of coprime subdegrees in finite primitive permutation groups
    Silvio Dolfi
    Robert Guralnick
    Cheryl E. Praeger
    Pablo Spiga
    Israel Journal of Mathematics, 2016, 216 : 107 - 147
  • [2] Coprime subdegrees for primitive permutation groups and completely reducible linear groups
    Dolfi, Silvio
    Guralnick, Robert
    Praeger, Cheryl E.
    Spiga, Pablo
    ISRAEL JOURNAL OF MATHEMATICS, 2013, 195 (02) : 745 - 772
  • [3] Coprime subdegrees for primitive permutation groups and completely reducible linear groups
    Silvio Dolfi
    Robert Guralnick
    Cheryl E. Praeger
    Pablo Spiga
    Israel Journal of Mathematics, 2013, 195 : 745 - 772
  • [4] COPRIME SUBDEGREES OF TWISTED WREATH PERMUTATION GROUPS
    Chua, Alexander Y.
    Giudici, Michael
    Morgan, Luke
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (04) : 1137 - 1162
  • [5] CHARACTERIZATION OF FAMILIES OF FINITE PERMUTATION GROUPS BY SUBDEGREES .1.
    ENOMOTO, H
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1972, 19 (01): : 129 - &
  • [6] CHARACTERIZATION OF FAMILIES OF FINITE PERMUTATION GROUPS BY SUBDEGREES .2.
    ENOMOTO, H
    JOURNAL OF THE FACULTY OF SCIENCE UNIVERSITY OF TOKYO SECTION 1-MATHEMATICS ASTRONOMY PHYSICS CHEMISTRY, 1973, 20 (01): : 1 - 11
  • [7] Sync-Maximal Permutation Groups Equal Primitive Permutation Groups
    Hoffmann, Stefan
    DESCRIPTIONAL COMPLEXITY OF FORMAL SYSTEMS, DCFS 2021, 2021, 13037 : 38 - 50
  • [8] FINITE SIMPLE-GROUPS AND FINITE PRIMITIVE PERMUTATION-GROUPS
    PRAEGER, CE
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (03) : 355 - 365
  • [10] FINITE PRIMITIVE PERMUTATION-GROUPS - A SURVEY
    PRAEGER, CE
    LECTURE NOTES IN MATHEMATICS, 1990, 1456 : 63 - 84