Nonlinear control of dynamical systems from time series

被引:17
|
作者
Petrov, V
Showalter, K
机构
[1] Department of Chemistry, West Virginia University, Morgantown, WV
关键词
D O I
10.1103/PhysRevLett.76.3312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Feedback control of multidimensional, nonlinear single-input single-output systems is formulated in terms of an invariant hypersurface in the delayed state space of a system observable and a control parameter. The surface is created directly from the response of the system to random perturbations, providing a model-independent nonlinear control algorithm. The algorithm can be used to stabilize unstable states or to drive a system to any particular objective state in a minimum number of steps.
引用
收藏
页码:3312 / 3315
页数:4
相关论文
共 50 条
  • [21] Decentralised control of nonlinear dynamical systems
    Udwadia, Firdaus E.
    Koganti, Prasanth B.
    Wanichanon, Thanapat
    Stipanovic, Dusan M.
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (04) : 827 - 843
  • [22] On control of nonlinear chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 783 - 787
  • [23] Control of chaos in nonlinear dynamical systems
    Magnitskii, NA
    Sidorov, SV
    DIFFERENTIAL EQUATIONS, 1998, 34 (11) : 1501 - 1509
  • [24] External dynamical equivalence of time-varying nonlinear control systems on time scales
    Bartosiewicz, Z.
    Pawluszewicz, E.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (05) : 961 - 968
  • [25] On Nonlinear Perturbations of Nonlinear Dynamical Systems, and Applications to Control
    Banks, S. P.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1984, 1 (01) : 67 - 81
  • [26] A nonlinear time series approach for time delay estimation and adaptive control of Networked Control Systems
    School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China
    WSEAS Trans. Circuits Syst., 2006, 10 (1499-1505):
  • [27] Constructing networks from a dynamical system perspective for multivariate nonlinear time series
    Nakamura, Tomomichi
    Tanizawa, Toshihiro
    Small, Michael
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [28] Dynamical modeling with kernels for nonlinear time series prediction
    Ralaivola, L
    d'Alché-Buc, F
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 129 - 136
  • [29] An algorithm for estimating fixed points of dynamical systems from time series
    Aguirre, LA
    Souza, AVP
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2203 - 2213
  • [30] Modified Bayesian approach for the reconstruction of dynamical systems from time series
    Mukhin, DN
    Feigin, AM
    Loskutov, EM
    Molkov, YI
    PHYSICAL REVIEW E, 2006, 73 (03):