3D Pose Regression using Convolutional Neural Networks

被引:70
|
作者
Mahendran, Siddharth [1 ]
Ali, Haider [1 ]
Vidal, Rene [1 ]
机构
[1] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICCVW.2017.254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D pose estimation is a key component of many important computer vision tasks such as autonomous navigation and 3D scene understanding. Most state-of-the-art approaches to 3D pose estimation solve this problem as a pose-classification problem in which the pose space is discretized into bins and a CNN classifier is used to predict a pose bin. We argue that the 3D pose space is continuous and propose to solve the pose estimation problem in a CNN regression framework with a suitable representation, data augmentation and loss function that captures the geometry of the pose space. Experiments on PASCAL3D+ show that the proposed 3D pose regression approach achieves competitive performance compared to the state-of-the-art.
引用
下载
收藏
页码:2174 / 2182
页数:9
相关论文
共 50 条
  • [41] Resource Efficient 3D Convolutional Neural Networks
    Koepueklue, Okan
    Kose, Neslihan
    Gunduz, Ahmet
    Rigoll, Gerhard
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1910 - 1919
  • [42] Depth-aware Convolutional Neural Networks for accurate 3D Pose Estimation in RGB-D Images
    Porzi, Lorenzo
    Penate-Sanchez, Adrian
    Ricci, Elisa
    Moreno-Noguer, Francesc
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 5777 - 5783
  • [43] Next-best-view regression using a 3D convolutional neural network
    J. Irving Vasquez-Gomez
    David Troncoso
    Israel Becerra
    Enrique Sucar
    Rafael Murrieta-Cid
    Machine Vision and Applications, 2021, 32
  • [44] Next-best-view regression using a 3D convolutional neural network
    Vasquez-Gomez, J. Irving
    Troncoso, David
    Becerra, Israel
    Sucar, Enrique
    Murrieta-Cid, Rafael
    MACHINE VISION AND APPLICATIONS, 2021, 32 (02)
  • [45] LUNG NODULE DETECTION IN CT USING 3D CONVOLUTIONAL NEURAL NETWORKS
    Huang, Xiaojie
    Shan, Junjie
    Vaidya, Vivek
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 379 - 383
  • [46] Basketball technique action recognition using 3D convolutional neural networks
    Wang, Jingfei
    Zuo, Liang
    Martinez, Carlos Cordente
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Detection of Vertebral Fractures in CT Using 3D Convolutional Neural Networks
    Nicolaes, Joeri
    Raeymaeckers, Steven
    Robben, David
    Wilms, Guido
    Vandermeulen, Dirk
    Libanati, Cesar
    Debois, Marc
    COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING, CSI 2019, 2020, 11963 : 3 - 14
  • [48] 3D Localization of RFID Antenna Tags Using Convolutional Neural Networks
    Patel, Sohel J.
    Zawodniok, Maciej J.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [49] Genre Classification of Movie Trailers using 3D Convolutional Neural Networks
    Shambharkar, Prashant Giridhar
    Thakur, Pratyush
    Imadoddin, Shaikh
    Chauhan, Shantanu
    Doja, M. N.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 850 - 858
  • [50] Construction of 3D solid vertebral models using convolutional neural networks
    Beskrovny, A. S.
    Bessonov, L., V
    Ivanovo, D., V
    Zolotov, V. S.
    Sidorenko, D. A.
    Kirillova, I., V
    Kossovich, L. Yu
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2021, 21 (03): : 368 - 378