New cation conducting solid electrolytes with the Sc2(WO4)3 type structure

被引:22
|
作者
Köhler, J [1 ]
Imanaka, N [1 ]
Adachi, GY [1 ]
机构
[1] Osaka Univ, Fac Engn, Dept Appl Chem, Osaka 5650871, Japan
关键词
D O I
10.1039/a900999j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Sc-2(WO4)(3) type structure has been used in order to create new trivalent cation conducting solid electrolytes by forming solid solutions of the type (Sc-2(WO4)(3))(1-x)(M-2( MoO4)(3))(x) (M = Nd, Sm, Gd, Lu). In these compounds, the anionic part of the structure is partly replaced by molybdate (WO4 --> MoO4) whereas the SC3+ cations are substituted by different larger lanthanide cations M (S --> M). Increasing the size of M gradually leads to a restriction of the M-2(WO4), solubility in the scandium tungstate phase (e.g.,x = 0-1 for M = Lu but x = 0-0.1 for M = Nd). The electrical properties of the resulting materials have been characterized in detail. All solid solutions exhibit neither electronic nor anionic O2- conduction but rather a mixed trivalent Sc3+/M3+ cationic conduction with the Sc3+ cations as the main charge carrying species for low M-2(MoO4)(3) concentrations (x < 0.5) and the ionic transference number is > 99%. For a given substitution rate of M for Sc, the electrical conductivity increases with increasing size of M. The highest conduction data were observed for the solid solution (Sc-2(WO4)3)(0.75) (Sm-2(MoO4)(3))(0.25) exhibiting a conductivity of 2.4 x 10(-4) S cm(-1) at 600 degrees C with an activation energy of 45.8 kJ mol(-1). Furthermore, in all different systems the maximum conductivity appears for the same average trivalent cationic radius indicating an optimized spatial spacing for the mobile cationic species.
引用
收藏
页码:1357 / 1362
页数:6
相关论文
共 50 条
  • [31] CRYSTAL STRUCTURE OF TRANSITION-METAL MOLYBDATES AND TUNGSTATES .2. DIAMAGNETIC SC2(WO4)3
    ABRAHAMS, SC
    BERNSTEIN, JL
    JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (08): : 2745 - +
  • [32] Pressure-induced amorphization in negative thermal expansion Sc2(WO4)3
    Secco, RA
    Liu, H
    Imanaka, N
    Adachi, G
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (14) : 1339 - 1340
  • [33] Sc2(WO4)3的高温快速合成及特性研究
    王少辉
    王玉梅
    通化师范学院学报, 2010, 31 (04) : 29 - 31
  • [34] Sc2(WO4)3的高温快速合成及特性研究
    王少辉
    王玉梅
    唐山师范学院学报, 2010, 32 (02) : 55 - 58
  • [35] Sc2(WO4)3 and Sc2(MoO4)3 and Their Solid Solutions: 45Sc, 17O, and 27Al MAS NMR Results at Ambient and High Temperature
    Kim, Namjun
    Stebbins, Jonathan F.
    CHEMISTRY OF MATERIALS, 2009, 21 (02) : 309 - 315
  • [36] Enthalpy factor of stabilization and a high cationic conductivity of molybdates M2(MoO4)3 with Sc2(WO4)3-type structure
    Reznitskii, LA
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY, 2002, 76 (08): : 1380 - 1382
  • [37] Sc2(WO4)3负热膨胀材料合成及其热性能
    朱君君
    程晓农
    杨娟
    功能材料, 2011, 42 (03) : 553 - 556
  • [38] M2WO4-SC2(WO4)3 SYSTEMS
    KARPOV, VN
    SOROKINA, OV
    ZHURNAL NEORGANICHESKOI KHIMII, 1973, 18 (06): : 1663 - 1668
  • [39] Anomalous ionic conductivity of SC2(WO4)3 mediated by structural changes at high pressures and temperatures
    Secco, RA
    Liu, H
    Imanaka, N
    Adachi, G
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (44) : 11285 - 11289
  • [40] Upconversion Luminescence and Temperature Sensing Properties for Sc2(WO4)3: Er3+/Yb3+
    Jin, Ye
    Li, Kun
    Luo, Xu
    Ma, Li
    Wang, Xiao-Jun
    Faguang Xuebao/Chinese Journal of Luminescence, 2021, 42 (01): : 91 - 97