Classification of causes of speech recognition errors using attention-based bidirectional long short-term memory and modulation spectrum

被引:0
|
作者
Santoso, Jennifer [1 ]
Yamada, Takeshi [1 ]
Makino, Shoji [1 ]
机构
[1] Univ Tsukuba, Tsukuba, Ibaraki, Japan
基金
日本学术振兴会;
关键词
NETWORKS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we address the problem of classifying four common utterance characteristics related to the utterance speed, which cause speech recognition errors. We previously proposed bidirectional long short-term memory (BLSTM) as a classifier and the modulation spectrum as an acoustic feature. However, the performance of it is still insufficient, since BLSTM classified the utterance characteristics from the overall utterance, while most of the recognition errors resulted from utterance characteristics occur in only a small part of utterance. In this paper, we propose an approach to enhance classifier by using attention mechanism (attention-based BLSTM). Attention-based BLSTM enables the classifier to weight each frame according to its importance instead of directly measuring overall information from the speech. Furthermore, we investigate the correspondence of utterance characteristics to different modulation spectrum block lengths. To evaluate the performance of the proposed method, we conducted a classification experiment on Japanese conversational speeches with four different utterance characteristics: 'fast', 'slow', 'filler', and 'stutter'. As a result, the proposed method improved the F-score by 0.033-0.129 compared with the previously proposed method using BLSTM. This result confirms the effectiveness of attention-based BLSTM in classifying cause of errors based on utterance characteristics.
引用
下载
收藏
页码:302 / 306
页数:5
相关论文
共 50 条
  • [11] Attention-based bidirectional-long short-term memory for abnormal human activity detection
    Kumar, Manoj
    Patel, Anoop Kumar
    Biswas, Mantosh
    Shitharth, S.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [12] Biomedical Ontology Matching Through Attention-Based Bidirectional Long Short-Term Memory Network
    Xue, Xingsi
    Jiang, Chao
    Zhang, Jie
    Hu, Cong
    JOURNAL OF DATABASE MANAGEMENT, 2021, 32 (04) : 14 - 27
  • [13] Effective Attention-based Neural Architectures for Sentence Compression with Bidirectional Long Short-Term Memory
    Nhi-Thao Tran
    Viet-Thang Luong
    Ngan Luu-Thuy Nguyen
    Minh-Quoc Nghiem
    PROCEEDINGS OF THE SEVENTH SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2016), 2016, : 123 - 130
  • [14] Sentiment classification using attention mechanism and bidirectional long short-term memory network
    Wu, Peng
    Li, Xiaotong
    Ling, Chen
    Ding, Shengchun
    Shen, Si
    APPLIED SOFT COMPUTING, 2021, 112
  • [15] Modeling citation worthiness by using attention-based bidirectional long short-term memory networks and interpretable models
    Tong Zeng
    Daniel E. Acuna
    Scientometrics, 2020, 124 : 399 - 428
  • [16] Modeling citation worthiness by using attention-based bidirectional long short-term memory networks and interpretable models
    Zeng, Tong
    Acuna, Daniel E.
    SCIENTOMETRICS, 2020, 124 (01) : 399 - 428
  • [17] Sarcasm Detection Using Soft Attention-Based Bidirectional Long Short-Term Memory Model With Convolution Network
    Le Hoang Son
    Kumar, Akshi
    Sangwan, Saurabh Raj
    Arora, Anshika
    Nayyar, Anand
    Abdel-Basset, Mohamed
    IEEE ACCESS, 2019, 7 : 23319 - 23328
  • [18] An attention Long Short-Term Memory based system for automatic classification of speech intelligibility
    Fernandez-Diaz, Miguel
    Gallardo-Antolin, Ascension
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96
  • [19] Time Series-based Spoof Speech Detection Using Long Short-term Memory and Bidirectional Long Short-term Memory
    Mirza, Arsalan R.
    Al-Talabani, Abdulbasit K.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2024, 12 (02): : 119 - 129
  • [20] Biomedical word sense disambiguation with bidirectional long short-term memory and attention-based neural networks
    Canlin Zhang
    Daniel Biś
    Xiuwen Liu
    Zhe He
    BMC Bioinformatics, 20