Multimode uncertainty relations and separability of continuous variable states

被引:89
|
作者
Serafini, A
机构
[1] UCL, Dept Phys & Astron, London WC1E 6BT, England
[2] Univ Salerno, Dipartimento Fis ER Caianiello, I-84081 Baronissi, Italy
关键词
D O I
10.1103/PhysRevLett.96.110402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A multimode uncertainty relation (generalizing the Robertson-Schrodinger relation) is derived as a necessary constraint on the second moments of n pairs of canonical operators. In turn, necessary conditions for the separability of multimode continuous variable states under (m+n)-mode bipartitions are derived from the uncertainty relation. These conditions are proven to be necessary and sufficient for (1+n)-mode Gaussian states and for (m+n)-mode bisymmetric Gaussian states.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] COHERENT STATES AND UNCERTAINTY RELATIONS
    TRIFONOV, DA
    PHYSICS LETTERS A, 1974, A 48 (03) : 165 - 166
  • [22] Separability conditions based on local fine-grained uncertainty relations
    Alexey E. Rastegin
    Quantum Information Processing, 2016, 15 : 2621 - 2638
  • [23] Multimode advantage in continuous-variable quantum batteries
    Konar, Tanoy Kanti
    Patra, Ayan
    Gupta, Rivu
    Ghosh, Srijon
    Sen , Aditi
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [24] Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations
    Wang, Pu
    Wang, Xuyang
    Li, Yongmin
    ENTROPY, 2018, 20 (03)
  • [25] Separability condition for multi-mode continuous-variable systems
    School of Science, Lanzhou University of Technology, Lanzhou 730050, China
    Guangxue Xuebao, 2009, 3 (827-830):
  • [26] Sum uncertainty relations for mixed states
    He, Kan
    Wei, Dahong
    Wang, Li
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2017, 15 (04)
  • [27] On uncertainty relations and states in deformation quantization
    Przanowski, M.
    Turrubiates, F. J.
    TOPICS IN MATHEMATICAL PHYSICS, GENERAL RELATIVITY AND COSMOLOGY IN HONOR OF JERZY PLEBANSKI, 2006, : 361 - +
  • [28] Stronger uncertainty relations of mixed states
    Fan, Yajing
    Cao, Huaixin
    Chen, Liang
    Meng, Huixian
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)
  • [29] Extension of the uncertainty relations to the mixed states
    Popov, D
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1999, 49 (08) : 1121 - 1135
  • [30] Improvement of uncertainty relations for mixed states
    Park, YM
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (04)