High-temperature treated TiO2 modified with 3-aminopropyltriethoxysilane as photoactive nanomaterials

被引:0
|
作者
Sienkiewicz, Agnieszka [1 ]
Kusiak-Nejman, Ewelina [1 ]
Wanag, Agnieszka [1 ]
Aidinis, Konstantinos [2 ]
Piwowarska, Danuta [3 ]
Morawski, Antoni W. [1 ]
Guskos, Niko [3 ]
机构
[1] West Pomeranian Univ Technol Szczecin, Fac Chem Technol & Engn, Dept Inorgan Chem Technol & Environm Engn, Pulaskiego 10, PL-70322 Szczecin, Poland
[2] Ajman Univ Sci & Technol, Dept Elect Engn, POB 346, Ajman, U Arab Emirates
[3] West Pomeranian Univ Technol Szczecin, Dept Tech Phys, Al Piastow 17, PL-70310 Szczecin, Poland
关键词
APTES-modified TiO; photoactivity; EPR measurements; NANOPARTICLES; EPR;
D O I
10.1515/rams-2022-0264
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of titanium dioxide (TiO2) modified with 3-aminopropyltriethoxysilane (APTES) was prepared by high-temperature calcination in an argon atmosphere in the temperature range from 800 to 1,000 degrees C. The properties of the obtained samples were compared with those of pure TiO2 annealed under the same conditions. Examining electron paramagnetic resonance (EPR) parameters at room temperature for APTES-TiO2 showed an intense resonance line from defects related to conducting electrons with g (eff) from 2.0028 to 2.0026 and 1.9052 for temperatures 800, 900, and 1,000 degrees C, respectively, while for pure calcined TiO2, these ERP lines were not observed. With the increase in the calcination temperature to 900 degrees C for APTES-TiO2 samples, the EPR increases linearly. This has been combined with a relatively high anatase content and small crystallites. The EPR line intensity at RT calculated for 1 g of sample showed an almost linear relationship with the photoactivity in removing ORANGE II dyes from water.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 50 条
  • [21] Photocatalytic degradation of chlorobenzene by TiO2 in high-temperature and High-PressureWater
    Kometani, N.
    Inata, S.
    Shimokawa, A.
    Yonezawa, Y.
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2008, 2008
  • [23] Effect of Calcination Temperature on the Phase Composition, Morphology, and Thermal Properties of ZrO2 and Al2O3 Modified with APTES (3-aminopropyltriethoxysilane)
    Nakonieczny, Damian S.
    Kern, Frank
    Dufner, Lukas
    Dubiel, Agnieszka
    Antonowicz, Magdalena
    Matus, Krzysztof
    MATERIALS, 2021, 14 (21)
  • [24] The new high-temperature surface structure on reduced TiO2(001)
    Busiakiewicz, A.
    Klusek, Z.
    Rogala, M.
    Dabrowski, P.
    Kowalczyk, P. J.
    Datta, P. K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (39)
  • [25] PHOTOCURRENT RESPONSE OF TIO2 AND SRTIO3 ANODES IN A HIGH-TEMPERATURE PHOTOELECTROCHEMICAL CELL
    BYVIK, CE
    KOONS, LF
    REICHMAN, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (03) : C116 - C117
  • [26] High-temperature ferromagnetism in Co-implanted TiO2 rutile
    Akdogan, Numan
    Nefedov, Alexei
    Zabel, Hartmut
    Westerholt, Kurt
    Becker, Hans-Werner
    Somsen, Christoph
    Goek, Afak
    Bashir, Asif
    Khaibullin, Rustam
    Tagirov, Lenar
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (11)
  • [27] High-temperature anomalies of dielectric constant in TiO2 thin films
    Bessergenev, Valentin
    MATERIALS RESEARCH BULLETIN, 2009, 44 (08) : 1722 - 1728
  • [28] Photoactive TiO2 Nanopowder Synthesized at Low Temperature without a Catalyst
    Nikkanen, J. -P.
    Huttunen-Saarivirta, E.
    Kanerva, T.
    Pore, V.
    Kivela, T.
    Lelanen, E.
    Mantyla, T.
    JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY, 2011, 2 (02): : 97 - 102
  • [29] NEW TYPE OF PHOTOACTIVE MATERIALS BASED ON TiO2 MODIFIED BY ANTHRAQUINONE DERIVATIVES
    Mech, J.
    Szacilowski, K.
    ARCHIVES OF METALLURGY AND MATERIALS, 2013, 58 (01) : 269 - 273
  • [30] Investigation of the effect of nano-SiO2 modified by 3-aminopropyltriethoxysilane on biobased polyamide 56 crystallization behavior
    Pei, Xiaoyuan
    Zhu, Yidong
    Li, Tianjiao
    Wang, Chunhong
    Li, H. anyu
    Sofiene, Mokhtar
    Guo, Xiaowei
    POLYMER COMPOSITES, 2025,