Kernel continuum regression

被引:6
|
作者
Lee, Myung Hee [1 ]
Liu, Yufeng [2 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Univ N Carolina, Carolina Ctr Genome Sci, Dept Biostat, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Continuum regression; Kernel regression; Ordinary least squares; Principal component regression; Partial least squares; PARTIAL LEAST-SQUARES; NONLINEAR-REGRESSION; SELECTION; MODELS; VIEW; PCA;
D O I
10.1016/j.csda.2013.06.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The continuum regression technique provides an appealing regression framework connecting ordinary least squares, partial least squares and principal component regression in one family. It offers some insight on the underlying regression model for a given application. Moreover, it helps to provide deep understanding of various regression techniques. Despite the useful framework, however, the current development on continuum regression is only for linear regression. In many applications, nonlinear regression is necessary. The extension of continuum regression from linear models to nonlinear models using kernel learning is considered. The proposed kernel continuum regression technique is quite general and can handle very flexible regression model estimation. An efficient algorithm is developed for fast implementation. Numerical examples have demonstrated the usefulness of the proposed technique. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 201
页数:12
相关论文
共 50 条
  • [31] Robust Regularized Kernel Regression
    Zhu, Jianke
    Hoi, Steven C. H.
    Lyu, Michael Rung-Tsong
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (06): : 1639 - 1644
  • [32] KERNEL DIMENSION REDUCTION IN REGRESSION
    Fukumizu, Kenji
    Bach, Francis R.
    Jordan, Michael I.
    ANNALS OF STATISTICS, 2009, 37 (04): : 1871 - 1905
  • [33] SPECTRALLY TRANSFORMED KERNEL REGRESSION
    Zhai, Runtian
    Pukdee, Rattana
    Jin, Roger
    Balcan, Maria-Florina
    Ravikumar, Pradeep
    arXiv,
  • [34] An Identity for Kernel Ridge Regression
    Zhdanov, Fedor
    Kalnishkan, Yuri
    ALGORITHMIC LEARNING THEORY, ALT 2010, 2010, 6331 : 405 - 419
  • [35] Kernel Support Tensor Regression
    Gao, Chao
    Wu, Xiao-jun
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 3986 - 3990
  • [36] Reducing Hubness for Kernel Regression
    Hara, Kazuo
    Suzuki, Ikumi
    Kobayashi, Kei
    Fukumizu, Kenji
    Radovanovi, Milos
    SIMILARITY SEARCH AND APPLICATIONS, SISAP 2015, 2015, 9371 : 339 - 344
  • [37] Examining parallelization in kernel regression
    Oltulu, Orcun
    Yavuz, Fulya Gokalp
    SOFT COMPUTING, 2024, 28 (01) : 205 - 215
  • [38] Evolutionary kernel density regression
    Kramer, Oliver
    Gieseke, Fabian
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9246 - 9254
  • [39] Composite kernel quantile regression
    Bang, Sungwan
    Eo, Soo-Heang
    Jhun, Myoungshic
    Cho, Hyung Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2228 - 2240
  • [40] Kernel adjusted nonparametric regression
    Eichner, Gerrit
    Stute, Winfried
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) : 2537 - 2544