ON A FRACTIONAL HARDY-SOBOLEV INEQUALITY WITH TWO-VARIABLES

被引:0
|
作者
Guo, Zhenyu [1 ]
Zhong, Xuexiu [2 ]
机构
[1] Liaoning Normal Univ, Sch Math, Dalian, Peoples R China
[2] South China Normal Univ, Res Ctr Appl Math & Interdisciplinary Studies, Guangzhou, Peoples R China
关键词
Hardy-Sobolev inequality; fractional critical exponent; CAFFARELLI-KOHN-NIRENBERG; ELLIPTIC-EQUATIONS; EXTREMAL-FUNCTIONS; SHARP CONSTANTS; NONEXISTENCE; SYMMETRY; REGULARITY; EXISTENCE;
D O I
10.1216/rmj.2022.52.1643
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fractional two-variable Hardy-Sobolev inequality and its corresponding best constant are considered in this paper. As an application, we establish existence and uniqueness results of a ground state solution to a system with fractional critical Hardy-Sobolev exponents.
引用
收藏
页码:1643 / 1660
页数:18
相关论文
共 50 条
  • [21] A sharp Hardy-Sobolev inequality with boundary term and applications
    Carvalho, Jonison L.
    Furtado, Marcelo F.
    Medeiros, Everaldo S.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [22] The role of the mean curvature in a Hardy-Sobolev trace inequality
    Fall, Mouhamed Moustapha
    Minlend, Ignace Aristide
    Thiam, El Hadji Abdoulaye
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (05): : 1047 - 1066
  • [23] On Korn's First Inequality in a Hardy-Sobolev Space
    Spector, Daniel E.
    Spector, Scott J.
    [J]. JOURNAL OF ELASTICITY, 2023, 154 (1-4) : 187 - 198
  • [24] Bounds for the best constant in an improved Hardy-Sobolev inequality
    Chaudhuri, N
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (04): : 757 - 765
  • [25] On Korn’s First Inequality in a Hardy-Sobolev Space
    Daniel E. Spector
    Scott J. Spector
    [J]. Journal of Elasticity, 2023, 154 : 187 - 198
  • [26] HARDY-SOBOLEV TYPE INEQUALITY AND SUPERCRITICAL EXTREMAL PROBLEM
    de Oliveira, Jose Francisco
    do O, Joao Marcos
    Ubilla, Pedro
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) : 3345 - 3364
  • [27] THE SECOND BEST CONSTANT FOR THE HARDY-SOBOLEV INEQUALITY ON MANIFOLDS
    Ali, Hussein Cheikh
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2022, 316 (02) : 249 - +
  • [28] QUANTITATIVE TRUNCATION ESTIMATES FOR FRACTIONAL HARDY-SOBOLEV OPTIMIZERS
    Marano, Salvatore A.
    Mosconi, Sunra
    [J]. MATEMATICHE, 2020, 75 (01): : 105 - 115
  • [29] A note on higher order fractional Hardy-Sobolev inequalities
    Musina, Roberta
    Nazarov, Alexander I.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 203
  • [30] The Hardy-Littlewood-Polya inequality for analytic functions in Hardy-Sobolev spaces
    Osipenko, K. Yu.
    [J]. SBORNIK MATHEMATICS, 2006, 197 (3-4) : 315 - 334